
Learning Ansible with

Rocky (English version)

A book from the Documentation Team

Version : 2025/07/02

Rocky Documentation Team

Copyright © 2023 The Rocky Enterprise Software Foundation

Table of contents

51. Licence

62. Learning Ansible with Rocky

73. Ansible Basics

93.1 The Ansible vocabulary

103.2 Installation on the management server

103.2.1 Installation from EPEL

113.2.2 Installation from python pip

123.3 Configuration files

133.3.1 The inventory file /etc/ansible/hosts

153.4 ansible command line usage

173.4.1 Preparing the client

183.4.2 Test with the ping module

193.5 Key authentication

193.5.1 Creating an SSH key

203.5.2 Private key authentication test

203.6 Using Ansible

203.6.1 The modules

233.6.2 Exercises

243.7 Playbooks

253.7.1 Example of Apache and MySQL playbook

293.8 Exercises results

314. Ansible Intermediate

314.1 The variables

334.1.1 Outsourcing variables

334.1.2 Display a variable

344.1.3 Save the return of a task

344.1.4 Exercises:

354.2 Loop management

374.2.1 Exercises:

374.3 Conditionals

394.3.1 Exercises:

394.4 Managing changes: the handlers

414.5 Asynchronous tasks

424.6 Exercise results

Table of contents

- 2/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

495. Ansible - Management of Files

495.1 ini_file module

505.2 lineinfile module

505.3 copy module

515.4 fetch module

515.5 template module

525.6 get_url module

536. Ansible Galaxy: Collections and Roles

536.1 ansible-galaxy command

546.2 Ansible Roles

546.2.1 Installing useful Roles

586.2.2 Introduction to Role development

596.2.3 Practical work: create a first simple role

646.3 Ansible Collections

666.3.1 Creating your own collection

677. Ansible Deployments with Ansistrano

677.1 Introduction

697.2 Labs

697.2.1 Deploying the Web server

727.2.2 Deploying the software

747.2.3 Checking on the server

757.2.4 Limit the number of releases

767.2.5 Using shared_paths and shared_files

787.2.6 Use a sub-directory of the repository for deployment

807.2.7 Managing git branch or tags

827.2.8 Actions between deployment steps

868. Ansible - Large Scale infrastructure

878.1 Variables storage

888.2 About Ansible tags

898.3 About the directory layout

918.4 Tests

948.5 Benefits

959. Ansible - Working with filters

969.1 Converting data

999.2 Join the elements of a list

1009.3 Transforming dictionaries into lists (and vice versa)

1019.4 Working with lists

1039.5 Transformation json/yaml

Table of contents

- 3/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

1039.6 Default values, optional variables, protect variables

1049.7 Associate a value according to another one (ternary)

1059.8 Some other filters

10610. Management server optimizations

10710.1 The ansible.cfg configuration file

10910.2 Caching the facts

10910.3 Using Vault

11110.4 Working with Windows servers

11210.5 Working with IP modules

11210.6 Generating a CMDB

Table of contents

- 4/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

1. Licence

RockyLinux offers Linux courseware for trainers or people wishing to learn how to

administer a Linux system on their own.

RockyLinux materials are published under Creative Commons-BY-SA. This means

you are free to share and transform the material, while respecting the author's

rights.

BY : Attribution. You must cite the name of the original author.

SA : Share Alike.

Creative Commons-BY-SA licence : https://creativecommons.org/licenses/by-sa/

4.0/

The documents and their sources are freely downloadable from:

https://docs.rockylinux.org

https://github.com/rocky-linux/documentation

Our media sources are hosted at github.com. You'll find the source code repository

where the version of this document was created.

From these sources, you can generate your own personalized training material

using mkdocs. You will find instructions for generating your document here.

How can I contribute to the documentation project?

You'll find all the information you need to join us on our git project home page.

We wish you all a pleasant reading and hope you enjoy the content.

•

•

•

1. Licence

- 5/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/
https://github.com/rocky-linux/documentation
https://www.mkdocs.org/
https://github.com/rocky-linux/documentation/tree/main/build_pdf
https://github.com/rocky-linux/documentation

2. Learning Ansible with Rocky

Ansible is a simple, yet powerful, automation engine for Linux. This tutorial will

guide you through the concepts of using Ansible to automate your IT tasks in a way

that is (hopefully) fun and informative. Using the exercises throughout these

chapters, will help you gain a comfort level with Ansible in real-world applications.

2. Learning Ansible with Rocky

- 6/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

3. Ansible Basics

In this chapter you will learn how to work with Ansible.

Objectives: In this chapter you will learn how to:

 Implement Ansible;

 Apply configuration changes on a server;

 Create first Ansible playbooks;

ansible, module, playbook .

Knowledge:

Complexity:

Reading time: 30 minutes

Ansible centralizes and automates administration tasks. It is:

agentless (it does not require specific deployments on clients),

idempotent (same effect each time it is run).

It uses the SSH protocol to remotely configure Linux clients or the WinRM

protocol to work with Windows clients. If none of these protocols is available, it is

always possible for Ansible to use an API, which makes Ansible a real Swiss army

knife for the configuration of servers, workstations, docker services, network

equipment, etc. (almost everything in fact).

The opening of SSH or WinRM flows to all clients from the Ansible server, makes it a critical element of the architecture that must be

carefully monitored.

As Ansible is mainly push-based, it will not keep the state of its targeted servers

between each of its executions. On the contrary, it will perform new state checks

each time it is executed. It is said to be stateless.

•

•

Warning

3. Ansible Basics

- 7/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

It will help you with:

provisioning (deploying a new VM),

application deployments,

configuration management,

automation,

orchestration (when more than 1 target is in use).

Ansible was originally written by Michael DeHaan, the founder of other tools such as Cobbler.

The earliest first version was 0.0.1, released on March 9, 2012.

On October 17, 2015, AnsibleWorks (the company behind Ansible) was acquired by Red Hat for $150 million.

•

•

•

•

•

Note

3. Ansible Basics

- 8/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

To offer a graphical interface to your daily use of Ansible, you can install some tools

like Ansible Tower (RedHat), which is not free, its opensource counterpart Awx, or

other projects like Jenkins and the excellent Rundeck can also be used.

To follow this training, you will need at least 2 servers under Rocky8:

the first one will be the management machine, Ansible will be installed on it.

the second one will be the server to configure and manage (another Linux than Rocky Linux will do just as well).

In the examples below, the administration station has the IP address 172.16.1.10, the managed station 172.16.1.11. It is up to you to

adapt the examples according to your IP addressing plan.

3.1 The Ansible vocabulary

The management machine: the machine on which Ansible is installed. Since

Ansible is agentless, no software is deployed on the managed servers.

The managed nodes: the target devices that Ansible manages are also referred

to as "hosts." These can be servers, network appliances, or any other computer.

The inventory: a file containing information about the managed servers.

The tasks: a task is a block defining a procedure to be executed (e.g., create a

user or a group, install a software package, etc.).

Abstract

•

•

•

•

•

•

3.1 The Ansible vocabulary

- 9/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

A module: a module abstracts a task. There are many modules provided by

Ansible.

The playbooks: a simple file in yaml format defining the target servers and the

tasks to be performed.

A role: a role allows you to organize the playbooks and all the other necessary

files (templates, scripts, etc.) to facilitate the sharing and reuse of code.

A collection: a collection includes a logical set of playbooks, roles, modules, and

plugins.

The facts: these are global variables containing information about the system

(machine name, system version, network interface and configuration, etc.).

The handlers: these are used to cause a service to be stopped or restarted in the

event of a change.

3.2 Installation on the management server

Ansible is available in the EPEL repository, but may sometimes be too old for the

current version, and you'll want to work with a more recent version.

We will therefore consider two types of installation:

the one based on EPEL repositories

one based on the pip python package manager

The EPEL is required for both versions, so you can go ahead and install that now:

EPEL installation:

3.2.1 Installation from EPEL

If we install Ansible from the EPEL, we can do the following:

•

•

•

•

•

•

•

•

•

sudo dnf install epel-release

sudo dnf install ansible

3.2 Installation on the management server

- 10/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

And then verify the installation:

Please note that ansible comes with its own version of python, different from the

system version of python (here 3.11.2 vs 3.6.8). You'll need to take this into account

when pip-installing the python modules required for your installation (e.g. pip3.11

install PyVMomi).

3.2.2 Installation from python pip

As we want to use a newer version of Ansible, we will install it from python3-pip :

Remove Ansible if you have installed it previously from EPEL.

At this stage, we can choose to install ansible with the version of python we want.

python3-argcomplete is provided by EPEL. Please install epel-release if not done yet. This package will help you complete Ansible

commands.

$ ansible --version
ansible [core 2.14.2]

config file = /etc/ansible/ansible.cfg
configured module search path = ['/home/rocky/.ansible/plugins/modules', '/

usr/share/ansible/plugins/modules']
ansible python module location = /usr/lib/python3.11/site-packages/ansible

ansible collection location = /home/rocky/.ansible/collections:/usr/share/
ansible/collections

executable location = /usr/bin/ansible
python version = 3.11.2 (main, Jun 22 2023, 04:35:24) [GCC 8.5.0 20210514

(Red Hat 8.5.0-18)] (/usr/bin/python3.11)
jinja version = 3.1.2
libyaml = True

$ python3 --version
Python 3.6.8

Note

sudo dnf install python38 python38-pip python38-wheel python3-argcomplete rust
cargo curl

Note

3.2.2 Installation from python pip

- 11/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

We can now install Ansible:

Check your Ansible version:

The manually installed version in our case is older than the version packaged by RPM because we used an older version of python.

This observation will vary with time and the age of the distribution and the python version of course.

3.3 Configuration files

The server configuration is located under /etc/ansible .

There are two main configuration files:

The main configuration file ansible.cfg where the commands, modules, plugins,

and ssh configuration reside;

The client machine management inventory file hosts where the clients, and

groups of clients are declared.

The configuration file would automatically be created if Ansible was installed with

its RPM package. With a pip installation, this file does not exist. We'll have to

create it by hand thanks to the ansible-config command:

pip3.8 install --user ansible
activate-global-python-argcomplete --user

$ ansible --version
ansible [core 2.13.11]

config file = None
configured module search path = ['/home/rocky/.ansible/plugins/modules', '/

usr/share/ansible/plugins/modules']
ansible python module location = /home/rocky/.local/lib/python3.8/site-

packages/ansible
ansible collection location = /home/rocky/.ansible/collections:/usr/share/

ansible/collections
executable location = /home/rocky/.local/bin/ansible
python version = 3.8.16 (default, Jun 25 2023, 05:53:51) [GCC 8.5.0 20210514

(Red Hat 8.5.0-18)]
jinja version = 3.1.2
libyaml = True

Note

•

•

3.3 Configuration files

- 12/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Example:

The --disabled option allows you to comment out the set of options by prefixing

them with a ; .

You can also choose to embed the ansible configuration in your code repository, with Ansible loading the configuration files it finds in

the following order (processing the first file it encounters and ignoring the rest):

if the environment variable $ANSIBLE_CONFIG is set, load the specified file.

ansible.cfg if exists in the current directory.

~/.ansible.cfg if exists (in the user’s home directory).

The default file is loaded if none of these three files are found.

3.3.1 The inventory file /etc/ansible/hosts

As Ansible will have to work with all your equipment to be configured, providing it

with one (or more) well-structured inventory file(s) that perfectly matches your

organization is essential.

It is sometimes necessary to think carefully about how to build this file.

Go to the default inventory file, which is located under /etc/ansible/hosts . Some

examples are provided and commented:

$ ansible-config -h
usage: ansible-config [-h] [--version] [-v] {list,dump,view,init} ...

View ansible configuration.

positional arguments:
{list,dump,view,init}

list Print all config options
dump Dump configuration
view View configuration file
init Create initial configuration

ansible-config init --disabled > /etc/ansible/ansible.cfg

Note

•

•

•

This is the default ansible 'hosts' file.
#
It should live in /etc/ansible/hosts

3.3.1 The inventory file /etc/ansible/hosts

- 13/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

As you can see, the file provided as an example uses the INI format, which is well

known to system administrators. Please note that you can choose another file

format (like yaml for example), but for the first tests, the INI format is well adapted

to our future examples.

#
- Comments begin with the '#' character
- Blank lines are ignored
- Groups of hosts are delimited by [header] elements
- You can enter hostnames or ip addresses
- A hostname/ip can be a member of multiple groups

Ex 1: Ungrouped hosts, specify before any group headers:

green.example.com
blue.example.com
192.168.100.1
192.168.100.10

Ex 2: A collection of hosts belonging to the 'webservers' group:

[webservers]
alpha.example.org
beta.example.org
192.168.1.100
192.168.1.110

If you have multiple hosts following a pattern, you can specify
them like this:

www[001:006].example.com

Ex 3: A collection of database servers in the 'dbservers' group:

[dbservers]
##
db01.intranet.mydomain.net
db02.intranet.mydomain.net
10.25.1.56
10.25.1.57

Here's another example of host ranges, this time there are no
leading 0s:

db-[99:101]-node.example.com

3.3.1 The inventory file /etc/ansible/hosts

- 14/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The inventory can be generated automatically in production, especially if you have

a virtualization environment like VMware VSphere or a cloud environment (Aws,

OpenStack, or another).

Creating a hostgroup in /etc/ansible/hosts :

As you may have noticed, the groups are declared in square brackets. Then come

the elements belonging to the groups. You can create, for example, a rocky8 group

by inserting the following block into this file:

Groups can be used within other groups. In this case, it must be specified that the

parent group is composed of subgroups with the :children attribute like this:

We won't go any further on inventory, but if you are interested, consider checking

this link.

Now that our management server is installed and our inventory is ready, it's time to

run our first ansible commands.

3.4 ansible command line usage

The ansible command launches a task on one or more target hosts.

•

[rocky8]
172.16.1.10
172.16.1.11

[linux:children]
rocky8
debian9

[ansible:children]
ansible_management
ansible_clients

[ansible_management]
172.16.1.10

[ansible_clients]
172.16.1.10

3.4 ansible command line usage

- 15/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Examples:

Since we have not yet configured authentication on our 2 test servers, not all the following examples will work. They are given as

examples to facilitate understanding, and will be fully functional later in this chapter.

List the hosts belonging to the rocky8 group:

Ping a host group with the ping module:

Display facts from a host group with the setup module:

Run a command on a host group by invoking the command module with arguments:

Run a command with administrator privileges:

Run a command using a custom inventory file:

ansible <host-pattern> [-m module_name] [-a args] [options]

Warning

•

ansible rocky8 --list-hosts

•

ansible rocky8 -m ping

•

ansible rocky8 -m setup

•

ansible rocky8 -m command -a 'uptime'

•

ansible ansible_clients --become -m command -a 'reboot'

•

ansible rocky8 -i ./local-inventory -m command -a 'date'

3.4 ansible command line usage

- 16/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

As in this example, it is sometimes simpler to separate the declaration of managed devices into several files (by cloud project for

example) and provide Ansible with the path to these files, rather than to maintain a long inventory file.

3.4.1 Preparing the client

On both management machine and clients, we will create an ansible user

dedicated to the operations performed by Ansible. This user will have to use sudo

rights, so it will have to be added to the wheel group.

This user will be used:

On the administration station side: to run ansible commands and SSH to

managed clients.

On the managed stations (here the server that serves as your administration

station also serves as a client, so it is managed by itself) to execute the commands

launched from the administration station: it must therefore have sudo rights.

On both machines, create an ansible user, dedicated to ansible:

Set a password for this user:

Modify the sudoers config to allow members of the wheel group to sudo without

password:

Note

Option Information

-a 'arguments' The arguments to pass to the module.

-b -K Requests a password and runs the command with higher privileges.

--user=username Uses this user to connect to the target host instead of the current user.

--become-user=username Executes the operation as this user (default: root).

-C Simulation. Does not make any changes to the target but tests it to see what should be changed.

-m module Runs the module called

•

•

sudo useradd ansible
sudo usermod -aG wheel ansible

sudo passwd ansible

3.4.1 Preparing the client

- 17/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Our goal here is to comment out the default, and uncomment the NOPASSWD

option so that these lines look like this when we are done:

If you receive the following error message when entering Ansible commands, it probably means that you forgot this step on one of

your clients: "msg": "Missing sudo password

When using management from this point on, start working with this new user:

3.4.2 Test with the ping module

By default, password login is not allowed by Ansible.

Uncomment the following line from the [defaults] section in the /etc/ansible/

ansible.cfg configuration file and set it to True:

Run a ping on each server of the rocky8 group:

sudo visudo

Allows people in group wheel to run all commands
%wheel ALL=(ALL) ALL

Same thing without a password
%wheel ALL=(ALL) NOPASSWD: ALL

Warning

sudo su - ansible

ask_pass = True

ansible rocky8 -m ping
SSH password:
172.16.1.10 | SUCCESS => {

"changed": false,
"ping": "pong"

}
172.16.1.11 | SUCCESS => {

"changed": false,
"ping": "pong"

}

3.4.2 Test with the ping module

- 18/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

You are asked for the ansible password of the remote servers, which is a security problem...

If you get this error "msg": "to use the 'ssh' connection type with passwords, you must install the sshpass program" , you can just

install sshpass on the management station:

You can now test the commands that didn't work previously in this chapter.

3.5 Key authentication

Password authentication will be replaced by a much more secure private/public key

authentication.

3.5.1 Creating an SSH key

The dual-key will be generated with the command ssh-keygen on the management

station by the ansible user:

Note

Tip

$ sudo dnf install sshpass

Abstract

[ansible]$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/ansible/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/ansible/.ssh/id_rsa.
Your public key has been saved in /home/ansible/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:Oa1d2hYzzdO0e/K10XPad25TA1nrSVRPIuS4fnmKr9g
ansible@localhost.localdomain
The key's randomart image is:
+---[RSA 3072]----+
| .o . +|
| o . =.|
| . . + +|
| o . = =.|
| S o = B.o|
| = + = =+|
| . + = o+B|

3.5 Key authentication

- 19/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The public key can be copied to the servers:

Re-comment the following line from the [defaults] section in the /etc/ansible/

ansible.cfg configuration file to prevent password authentication:

3.5.2 Private key authentication test

For the next test, the shell module, allowing remote command execution, is used:

No password is required, private/public key authentication works!

In production environment, you should now remove the ansible passwords previously set to enforce your security (as now an

authentication password is not necessary).

3.6 Using Ansible

Ansible can be used from the shell or via playbooks.

3.6.1 The modules

The list of modules classified by category can be found here. Ansible offers more

than 750!

| o + o *@|
| . Eoo .+B|
+----[SHA256]-----+

ssh-copy-id ansible@172.16.1.10
ssh-copy-id ansible@172.16.1.11

#ask_pass = True

ansible rocky8 -m shell -a "uptime"
172.16.1.10 | SUCCESS | rc=0 >>
12:36:18 up 57 min, 1 user, load average: 0.00, 0.00, 0.00

172.16.1.11 | SUCCESS | rc=0 >>
12:37:07 up 57 min, 1 user, load average: 0.00, 0.00, 0.00

Note

3.5.2 Private key authentication test

- 20/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/collections/index_module.html

The modules are now grouped into module collections, a list of which can be found

here.

Collections are a distribution format for Ansible content that can include

playbooks, roles, modules, and plugins.

A module is invoked with the -m option of the ansible command:

There is a module for almost every need! It is thus advised, instead of using the

shell module, to look for a module adapted to the need.

Each category of need has its own module. Here is a non-exhaustive list:

Example of software installation

The dnf module allows for the installation of software on the target clients:

ansible <host-pattern> [-m module_name] [-a args] [options]

Type Examples

System Management user (users management), group (groups management), etc.

Software management dnf , yum , apt , pip , npm

File management copy , fetch , lineinfile , template , archive

Database management mysql , postgresql , redis

Cloud management amazon S3 , cloudstack , openstack

Cluster management consul , zookeeper

Send commands shell , script , expect

Downloads get_url

Source management git , gitlab

ansible rocky8 --become -m dnf -a name="httpd"
172.16.1.10 | SUCCESS => {

"changed": true,
"msg": "",
"rc": 0,
"results": [

...
\n\nComplete!\n"

]
}

3.6.1 The modules

- 21/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/collections/index.html
https://docs.ansible.com/ansible/latest/collections/index.html

The installed software being a service, it is now necessary to start it with the

module systemd :

Try to launch those last 2 commands twice. You will observe that the first time Ansible will take actions to reach the state set by the

command. The second time, it will do nothing because it will have detected that the state is already reached!

172.16.1.11 | SUCCESS => {
 "changed": true,
 "msg": "",
 "rc": 0,
 "results": [
 ...
 \n\nComplete!\n"

]
}

ansible rocky8 --become -m systemd -a "name=httpd state=started"
172.16.1.10 | SUCCESS => {

"changed": true,
"name": "httpd",
"state": "started"

}
172.16.1.11 | SUCCESS => {

"changed": true,
"name": "httpd",
"state": "started"

}

Tip

3.6.1 The modules

- 22/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

3.6.2 Exercises

To help discover more about Ansible and to get used to searching the Ansible

documentation, here are some exercises you can do before going on:

Create the groups Paris, Tokio, NewYork

Create the user supervisor

Change the user to have a uid of 10000

Change the user so that it belongs to the Paris group

Install the tree software

Stop the crond service

Create an empty file with 644 rights

Update your client distribution

Restart your client

Do not use the shell module. Look in the documentation for the appropriate modules!

setup module: introduction to facts

The system facts are variables retrieved by Ansible via its setup module.

Take a look at the different facts of your clients to get an idea of the amount of

information that can be easily retrieved via a simple command.

We'll see later how to use facts in our playbooks and how to create our own facts.

•

•

•

•

•

•

•

•

•

Warning

ansible ansible_clients -m setup | less
192.168.1.11 | SUCCESS => {

"ansible_facts": {
"ansible_all_ipv4_addresses": [

"192.168.1.11"
],
"ansible_all_ipv6_addresses": [

"2001:861:3dc3:fcf0:a00:27ff:fef7:28be",
"fe80::a00:27ff:fef7:28be"

],
"ansible_apparmor": {

3.6.2 Exercises

- 23/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Now that we have seen how to configure a remote server with Ansible on the

command line, we will be able to introduce the notion of playbook. Playbooks are

another way to use Ansible, which is not much more complex, but which will make

it easier to reuse your code.

3.7 Playbooks

Ansible's playbooks describe a policy to be applied to remote systems, to force

their configuration. Playbooks are written in an easily understandable text format

that groups together a set of tasks: the yaml format.

Learn more about yaml here

The options are identical to the ansible command.

"status": "disabled"
},
"ansible_architecture": "x86_64",
"ansible_bios_date": "12/01/2006",
"ansible_bios_vendor": "innotek GmbH",
"ansible_bios_version": "VirtualBox",
"ansible_board_asset_tag": "NA",
"ansible_board_name": "VirtualBox",
"ansible_board_serial": "NA",
"ansible_board_vendor": "Oracle Corporation",
...

Note

ansible-playbook <file.yml> ... [options]

3.7 Playbooks

- 24/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/reference_appendices/YAMLSyntax.html

The command returns the following error codes:

Please note that ansible will return Ok when no host matches your target, which might mislead you!

3.7.1 Example of Apache and MySQL playbook

The following playbook allows us to install Apache and MariaDB on our target

servers.

Create a test.yml file with the following content:

Code Error

0 OK or no matching host

1 Error

2 One or more hosts are failing

3 One or more hosts are unreachable

4 Analyze error

5 Bad or incomplete options

99 Run interrupted by user

250 Unexpected error

Note

- hosts: rocky8 <1>

become: true <2>
become_user: root

tasks:

- name: ensure apache is at the latest version
dnf: name=httpd,php,php-mysqli state=latest

- name: ensure httpd is started
systemd: name=httpd state=started

- name: ensure mariadb is at the latest version
dnf: name=mariadb-server state=latest

- name: ensure mariadb is started

3.7.1 Example of Apache and MySQL playbook

- 25/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

<1> The targeted group or the targeted server must exist in the inventory

<2> Once connected, the user becomes root (via sudo by default)

The execution of the playbook is done with the command ansible-playbook :

For more readability, it is recommended to write your playbooks in full yaml

format. In the previous example, the arguments are given on the same line as the

module, the value of the argument following its name separated by an = . Look at

the same playbook in full yaml:

systemd: name=mariadb state=started
...

•

•

$ ansible-playbook test.yml

PLAY [rocky8] **

TASK [setup] **
ok: [172.16.1.10]
ok: [172.16.1.11]

TASK [ensure apache is at the latest version] *********************************
ok: [172.16.1.10]
ok: [172.16.1.11]

TASK [ensure httpd is started] **
changed: [172.16.1.10]
changed: [172.16.1.11]

TASK [ensure mariadb is at the latest version]

changed: [172.16.1.10]
changed: [172.16.1.11]

TASK [ensure mariadb is started]

changed: [172.16.1.10]
changed: [172.16.1.11]

PLAY RECAP

172.16.1.10 : ok=5 changed=3 unreachable=0 failed=0
172.16.1.11 : ok=5 changed=3 unreachable=0 failed=0

3.7.1 Example of Apache and MySQL playbook

- 26/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

dnf is one of the modules that allow you to give it a list as argument.

Note about collections: Ansible now provides modules in the form of collections.

Some modules are provided by default within the ansible.builtin collection, others

must be installed manually via the:

where [collectionname] is the name of the collection (the square brackets here are

used to highlight the need to replace this with an actual collection name, and are

NOT part of the command).

The previous example should be written like this:

- hosts: rocky8

become: true
become_user: root

tasks:

- name: ensure apache is at the latest version
dnf:

name: httpd,php,php-mysqli
state: latest

- name: ensure httpd is started
systemd:

name: httpd
state: started

- name: ensure mariadb is at the latest version
dnf:

name: mariadb-server
state: latest

- name: ensure mariadb is started
systemd:

name: mariadb
state: started

...

Tip

ansible-galaxy collection install [collectionname]

3.7.1 Example of Apache and MySQL playbook

- 27/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

A playbook is not limited to one target:

- hosts: rocky8

become: true
become_user: root

tasks:

- name: ensure apache is at the latest version
ansible.builtin.dnf:

name: httpd,php,php-mysqli
state: latest

- name: ensure httpd is started
ansible.builtin.systemd:

name: httpd
state: started

- name: ensure mariadb is at the latest version
ansible.builtin.dnf:

name: mariadb-server
state: latest

- name: ensure mariadb is started
ansible.builtin.systemd:

name: mariadb
state: started

...

- hosts: webservers

become: true
become_user: root

tasks:

- name: ensure apache is at the latest version
ansible.builtin.dnf:

name: httpd,php,php-mysqli
state: latest

- name: ensure httpd is started
ansible.builtin.systemd:

name: httpd
state: started

3.7.1 Example of Apache and MySQL playbook

- 28/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can check the syntax of your playbook:

You can also use a "linter" for yaml:

then check the yaml syntax of your playbooks:

3.8 Exercises results

Create the groups Paris, Tokio, NewYork

Create the user supervisor

Change the user to have a uid of 10000

Change the user so that it belongs to the Paris group

Install the tree software

Stop the crond service

Create an empty file with 0644 rights

- hosts: databases
become: true
become_user: root

- name: ensure mariadb is at the latest version
ansible.builtin.dnf:

name: mariadb-server
state: latest

- name: ensure mariadb is started
ansible.builtin.systemd:

name: mariadb
state: started

...

ansible-playbook --syntax-check play.yml

dnf install -y yamllint

$ yamllint test.yml
test.yml

8:1 error syntax error: could not find expected ':' (syntax)

•

•

•

•

•

•

•

3.8 Exercises results

- 29/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Update your client distribution

Restart your client

•

•

ansible ansible_clients --become -m group -a "name=Paris"
ansible ansible_clients --become -m group -a "name=Tokio"
ansible ansible_clients --become -m group -a "name=NewYork"
ansible ansible_clients --become -m user -a "name=Supervisor"
ansible ansible_clients --become -m user -a "name=Supervisor uid=10000"
ansible ansible_clients --become -m user -a "name=Supervisor uid=10000
groups=Paris"
ansible ansible_clients --become -m dnf -a "name=tree"
ansible ansible_clients --become -m systemd -a "name=crond state=stopped"
ansible ansible_clients --become -m copy -a
"content='' dest=/tmp/test force=no mode=0644"
ansible ansible_clients --become -m dnf -a "name=* state=latest"
ansible ansible_clients --become -m reboot

3.8 Exercises results

- 30/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

4. Ansible Intermediate

In this chapter, you will continue to learn how to work with Ansible.

Objectives: In this chapter, you will learn how to:

 work with variables;

 use loops;

 manage state changes and react to them;

 manage asynchronous tasks.

ansible, module, playbook

Knowledge:

Complexity:

Reading time: 30 minutes

In the previous chapter, you learned how to install Ansible, use it on the command

line, and write playbooks to promote the re-usability of your code.

In this chapter, we can start to discover more advanced notions of how to use

Ansible and some interesting tasks that you will use regularly.

4.1 The variables

More information can be found here.

Under Ansible, there are different types of primitive variables:

strings,

integers,

booleans.

Note

•

•

•

4. Ansible Intermediate

- 31/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html

These variables can be organized as:

dictionaries,

lists.

A variable can be defined in different places, such as a playbook, a role, or the

command line.

For example, from a playbook:

or from the command line:

Once defined, a variable can be used by calling it between double braces:

{{ port_http }} for a simple value,

{{ service['rhel'] }} or {{ service.rhel }} for a dictionary.

For example:

Of course, it is also possible to access the global variables (the facts) of Ansible

(OS type, IP addresses, VM name, etc.).

•

•

- hosts: apache1

vars:
port_http: 80
service:

debian: apache2
rhel: httpd

ansible-playbook deploy-http.yml --extra-vars "service=httpd"

•

•

- name: make sure apache is started
ansible.builtin.systemd:

name: "{{ service['rhel'] }}"
state: started

4.1 The variables

- 32/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

4.1.1 Outsourcing variables

Variables can be included in a file external to the playbook, in which case this file

must be defined in the playbook with the vars_files directive:

The myvariables.yml file:

It can also be added dynamically with the use of the module include_vars :

4.1.2 Display a variable

To display a variable, you have to activate the debug module as follows:

You can also use the variable inside a text:

- hosts: apache1

vars_files:
- myvariables.yml

port_http: 80
ansible.builtin.systemd::

debian: apache2
rhel: httpd

- name: Include secrets.
ansible.builtin.include_vars:

file: vault.yml

- ansible.builtin.debug:
var: service['debian']

- ansible.builtin.debug:
msg: "Print a variable in a message : {{ service['debian'] }}"

4.1.1 Outsourcing variables

- 33/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

4.1.3 Save the return of a task

To save the return of a task and to be able to access it later, you have to use the

keyword register inside the task itself.

Use of a stored variable:

The variable homes.stdout_lines is a list of variables of type string, a way to organize variables we had not yet encountered.

The strings that make up the stored variable can be accessed via the stdout value

(which allows you to do things like homes.stdout.find("core") != -1), to exploit

them using a loop (see loop), or simply by their indices as seen in the previous

example.

4.1.4 Exercises:

Write a playbook, play-vars.yml, using global variables that print the target's

distribution name and major version.

Write a playbook using the following dictionary to display the services that will be

installed:

- name: /home content
shell: ls /home
register: homes

- name: Print the first directory name
ansible.builtin.debug:

var: homes.stdout_lines[0]

- name: Print the first directory name
ansible.builtin.debug:

var: homes.stdout_lines[1]

Note

•

•

service:
web:

name: apache
rpm: httpd

db:

4.1.3 Save the return of a task

- 34/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The default type should be "web".

Override the type variable using the command line

Externalize variables in a vars.yml file

4.2 Loop management

A loop allows you to iterate a task over a list, a hash, or a dictionary, for example.

More information can be found here.

A simple example of use, creation of 4 users:

At each iteration of the loop, the value of the list used is stored in the item

variable, accessible in the loop code.

Of course, a list can be defined in an external file:

and be used inside the task like this (after having included the vars file):

name: mariadb
rpm: mariadb-server

•

•

Note

- name: add users
user:

name: "{{ item }}"
state: present
groups: "users"

loop:
- antoine
- patrick
- steven
- xavier

users:
- antoine
- patrick
- steven
- xavier

4.2 Loop management

- 35/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_loops.html

We can use the example seen while studying stored variables to improve it. Use of

a stored variable:

A dictionary can also be used in a loop.

In this case, you must transform the dictionary into an item with a jinja filter (jinja

is the templating engine used by Ansible): | dict2items .

In the loop, it becomes possible to use item.key , which corresponds to the

dictionary key, and item.value , which corresponds to the key's values.

Let's see this through a concrete example, showing the management of the system

users:

- name: add users
user:

name: "{{ item }}"
state: present
groups: "users"

loop: "{{ users }}"

- name: /home content
shell: ls /home
register: homes

- name: Print the directories name
ansible.builtin.debug:

msg: "Directory => {{ item }}"
loop: "{{ homes.stdout_lines }}"

- hosts: rocky8

become: true
become_user: root
vars:

users:
antoine:

group: users
state: present

steven:
group: users
state: absent

tasks:

4.2 Loop management

- 36/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Loops can be used for many things. When your use of Ansible pushes you to use them more complexly, you will discover the

possibilities they offer.

4.2.1 Exercises:

Display the content of the service variable from the previous exercise using a

loop.

You will have to transform your service variable, which is a dictionary, to a list with the help of the jinja filter list as this:

4.3 Conditionals

More information can be found here.

The when statement is very useful in many cases, such as not performing certain

actions on certain types of servers, if a file or a user does not exist, etc.

Behind the when statement, the variables do not need double braces (they are, in fact, Jinja2 expressions...).

Conditions can be grouped with parentheses:

- name: Manage users
user:

name: "{{ item.key }}"
group: "{{ item.value.group }}"
state: "{{ item.value.state }}"

loop: "{{ users | dict2items }}"

Note

•

Note

{{ service.values() | list }}

Note

Note

- name: "Reboot only Debian servers"
reboot:
when: ansible_os_family == "Debian"

4.2.1 Exercises:

- 37/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_conditionals.html

The conditions corresponding to a logical AND can be provided as a list:

You can test the value of a boolean and verify that it is true:

You can also test that it is not true:

You will probably have to test that a variable exists to avoid execution errors:

- name: "Reboot only CentOS version 6 and Debian version 7"
reboot:
when: (ansible_distribution == "CentOS" and

ansible_distribution_major_version == "6") or
(ansible_distribution == "Debian" and

ansible_distribution_major_version == "7")

- name: "Reboot only CentOS version 6"
reboot:
when:

- ansible_distribution == "CentOS"
- ansible_distribution_major_version == "6"

- name: check if directory exists
stat:

path: /home/ansible
register: directory

- ansible.builtin.debug:
var: directory

- ansible.builtin.debug:
msg: The directory exists

when:
- directory.stat.exists
- directory.stat.isdir

when:
- file.stat.exists
- not file.stat.isdir

when: myboolean is defined and myboolean

4.3 Conditionals

- 38/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

4.3.1 Exercises:

Print the value of service.web only when type equals to web .

4.4 Managing changes: the handlers

More information can be found here.

When changes occur, handlers are allowed to launch operations, like restarting a

service.

A module, being idempotent, a playbook can detect that there has been a

significant change on a remote system and thus trigger an operation in reaction to

this change. A notification is sent at the end of a playbook task block, and the

reaction operation will be triggered only once, even if several tasks send the same

notification.

For example, several tasks may indicate that the httpd service needs to be

restarted due to a change in its configuration files. However, the service will only

be restarted once to avoid multiple unnecessary starts.

•

Note

- name: template configuration file
template:

src: template-site.j2
dest: /etc/httpd/sites-availables/test-site.conf

notify:

4.3.1 Exercises:

- 39/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_handlers.html

A handler is a kind of task referenced by a unique global name:

One or more notifiers activate it.

It does not start immediately, but waits until all tasks are complete to run.

Example of handlers:

Since version 2.2 of Ansible, handlers can listen directly as well:

- restart memcached
- restart httpd

•

•

handlers:

- name: restart memcached
systemd:

name: memcached
state: restarted

- name: restart httpd
systemd:

name: httpd
state: restarted

handlers:

- name: restart memcached
systemd:

name: memcached
state: restarted

listen: "web services restart"

- name: restart apache
systemd:

name: apache
state: restarted

listen: "web services restart"

tasks:
- name: restart everything

command: echo "this task will restart the web services"
notify: "web services restart"

4.4 Managing changes: the handlers

- 40/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

4.5 Asynchronous tasks

More information can be found here.

By default, SSH connections to hosts remain open while executing various

playbook tasks on all nodes.

This can cause some problems, especially:

if the execution time of the task is longer than the SSH connection timeout

if the connection is interrupted during the action (server reboot, for example)

In this case, you will have to switch to asynchronous mode and specify a maximum

execution time and the frequency (by default, 10s) with which you will check the

host status.

By specifying a poll value of 0, Ansible will execute the task and continue without

worrying about the result.

Here's an example using asynchronous tasks, which allows you to restart a server

and wait for port 22 to be reachable again:

Note

•

•

Wait 2s and launch the reboot
- name: Reboot system

shell: sleep 2 && shutdown -r now "Ansible reboot triggered"
async: 1
poll: 0
ignore_errors: true
become: true
changed_when: False

Wait the server is available
- name: Waiting for server to restart (10 mins max)

wait_for:
host: "{{ inventory_hostname }}"
port: 22
delay: 30
state: started
timeout: 600

delegate_to: localhost

4.5 Asynchronous tasks

- 41/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_async.html

You can also decide to launch a long-running task and forget it (fire and forget)

because the execution does not matter in the playbook.

4.6 Exercise results

Write a playbook, `play-vars.yml, ' using global variables, that prints the target's

distribution name and major version.

Write a playbook using the following dictionary to display the services that will be

installed:

•

- hosts: ansible_clients

tasks:

- name: Print globales variables
debug:

msg: "The distribution is {{ ansible_distribution }} version
{{ ansible_distribution_major_version }}"

$ ansible-playbook play-vars.yml

PLAY [ansible_clients]

**

TASK [Gathering Facts]

**
ok: [192.168.1.11]

TASK [Print globales variables]
**
ok: [192.168.1.11] => {

"msg": "The distribution is Rocky version 8"
}

PLAY RECAP

192.168.1.11 : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

•

4.6 Exercise results

- 42/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The default type should be "web".

service:
web:

name: apache
rpm: httpd

db:
name: mariadb
rpm: mariadb-server

- hosts: ansible_clients

vars:
type: web
service:

web:
name: apache
rpm: httpd

db:
name: mariadb
rpm: mariadb-server

tasks:

- name: Print a specific entry of a dictionary
debug:

msg: "The {{ service[type]['name'] }} will be installed with the
packages {{ service[type].rpm }}"

$ ansible-playbook display-dict.yml

PLAY [ansible_clients]

**

TASK [Gathering Facts]

**
ok: [192.168.1.11]

TASK [Print a specific entry of a dictionnaire]
**
ok: [192.168.1.11] => {

"msg": "The apache will be installed with the packages httpd"
}

4.6 Exercise results

- 43/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Override the type variable using the command line:

Externalize variables in a vars.yml file

PLAY RECAP

192.168.1.11 : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

•

ansible-playbook --extra-vars "type=db" display-dict.yml

PLAY [ansible_clients]

**

TASK [Gathering Facts]

**
ok: [192.168.1.11]

TASK [Print a specific entry of a dictionary]
**
ok: [192.168.1.11] => {

"msg": "The mariadb will be installed with the packages mariadb-server"
}

PLAY RECAP

192.168.1.11 : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

•

type: web
service:

web:
name: apache
rpm: httpd

db:
name: mariadb
rpm: mariadb-server

- hosts: ansible_clients

vars_files:

4.6 Exercise results

- 44/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Display the content of the service variable from the previous exercise using a

loop.

You will have to transform your service variable, which is a dictionary, to an item or a list with the help of the jinja filters dict2items

or list as this:

With dict2items :

- vars.yml

tasks:

- name: Print a specific entry of a dictionary
debug:

msg: "The {{ service[type]['name'] }} will be installed with the
packages {{ service[type].rpm }}"

•

Note

{{ service | dict2items }}

{{ service.values() | list }}

- hosts: ansible_clients

vars_files:
- vars.yml

tasks:

- name: Print a dictionary variable with a loop
debug:

msg: "{{item.key }} | The {{ item.value.name }} will be installed with
the packages {{ item.value.rpm }}"

loop: "{{ service | dict2items }}"

$ ansible-playbook display-dict.yml

PLAY [ansible_clients]

**

TASK [Gathering Facts]

**
ok: [192.168.1.11]

4.6 Exercise results

- 45/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

With list :

TASK [Print a dictionary variable with a loop]
**
ok: [192.168.1.11] => (item={'key': 'web', 'value': {'name': 'apache', 'rpm':
'httpd'}}) => {

"msg": "web | The apache will be installed with the packages httpd"
}
ok: [192.168.1.11] => (item={'key': 'db', 'value': {'name': 'mariadb', 'rpm':
'mariadb-server'}}) => {

"msg": "db | The mariadb will be installed with the packages mariadb-
server"
}

PLAY RECAP

192.168.1.11 : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

- hosts: ansible_clients

vars_files:
- vars.yml

tasks:

- name: Print a dictionary variable with a loop
debug:

msg: "The {{ item.name }} will be installed with the packages
{{ item.rpm }}"

loop: "{{ service.values() | list}}"
~

$ ansible-playbook display-dict.yml

PLAY [ansible_clients]

**

TASK [Gathering Facts]

**
ok: [192.168.1.11]

4.6 Exercise results

- 46/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Print the value of service.web only when type equals to web .

TASK [Print a dictionary variable with a loop]
**
ok: [192.168.1.11] => (item={'name': 'apache', 'rpm': 'httpd'}) => {

"msg": "The apache will be installed with the packages httpd"
}
ok: [192.168.1.11] => (item={'name': 'mariadb', 'rpm': 'mariadb-server'}) => {

"msg": "The mariadb will be installed with the packages mariadb-server"
}

PLAY RECAP

192.168.1.11 : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

•

- hosts: ansible_clients

vars_files:
- vars.yml

tasks:

- name: Print a dictionary variable
debug:

msg: "The {{ service.web.name }} will be installed with the packages
{{ service.web.rpm }}"

when: type == "web"

- name: Print a dictionary variable
debug:

msg: "The {{ service.db.name }} will be installed with the packages
{{ service.db.rpm }}"

when: type == "db"

$ ansible-playbook display-dict.yml

PLAY [ansible_clients]

**

TASK [Gathering Facts]

**

4.6 Exercise results

- 47/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

ok: [192.168.1.11]

TASK [Print a dictionary variable]
**
ok: [192.168.1.11] => {

"msg": "The apache will be installed with the packages httpd"
}

TASK [Print a dictionary variable]
**
skipping: [192.168.1.11]

PLAY RECAP

192.168.1.11 : ok=2 changed=0 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

$ ansible-playbook --extra-vars "type=db" display-dict.yml

PLAY [ansible_clients]

**

TASK [Gathering Facts]

**
ok: [192.168.1.11]

TASK [Print a dictionary variable]
**
skipping: [192.168.1.11]

TASK [Print a dictionary variable]
**
ok: [192.168.1.11] => {

"msg": "The mariadb will be installed with the packages mariadb-server"
}

PLAY RECAP

192.168.1.11 : ok=2 changed=0 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

4.6 Exercise results

- 48/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

5. Ansible - Management of Files

In this chapter you will learn how to manage files with Ansible.

Objectives: In this chapter you will learn how to:

 modify the content of file;

 upload files to the targeted servers;

 retrieve files from the targeted servers.

ansible, module, files

Knowledge:

Complexity:

Reading time: 20 minutes

Depending on your needs, you will have to use different Ansible modules to modify

the system configuration files.

5.1 ini_file module

When you want to modify an INI file (section between [] then key=value pairs),

the easiest way is to use the ini_file module.

More information can be found here.

The module requires:

The value of the section

The name of the option

The new value

Example of use:

Note

•

•

•

5. Ansible - Management of Files

- 49/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/collections/community/general/ini_file_module.html

5.2 lineinfile module

To ensure that a line is present in a file, or when a single line in a file needs to be

added or modified, use the linefile module.

More information can be found here.

In this case, the line to be modified in a file will be found using a regexp.

For example, to ensure that the line starting with SELINUX= in the /etc/selinux/

config file contains the value enforcing :

5.3 copy module

When a file has to be copied from the Ansible server to one or more hosts, it is

better to use the copy module.

More information can be found here.

Here we are copying myflile.conf from one location to another:

- name: change value on inifile
community.general.ini_file:

dest: /path/to/file.ini
section: SECTIONNAME
option: OPTIONNAME
value: NEWVALUE

Note

- ansible.builtin.lineinfile:
path: /etc/selinux/config
regexp: '^SELINUX='
line: 'SELINUX=enforcing'

Note

- ansible.builtin.copy:
src: /data/ansible/sources/myfile.conf
dest: /etc/myfile.conf
owner: root

5.2 lineinfile module

- 50/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/lineinfile_module.html
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/copy_module.html

5.4 fetch module

When a file has to be copied from a remote server to the local server, it is best to

use the fetch module.

More information can be found here.

This module does the opposite of the copy module:

5.5 template module

Ansible and its template module use the Jinja2 template system (http://

jinja.pocoo.org/docs/) to generate files on target hosts.

More information can be found here.

For example:

It is possible to add a validation step if the targeted service allows it (for example

apache with the command apachectl -t):

group: root
mode: 0644

Note

- ansible.builtin.fetch:
src: /etc/myfile.conf
dest: /data/ansible/backup/myfile-{{ inventory_hostname }}.conf
flat: yes

Note

- ansible.builtin.template:
src: /data/ansible/templates/monfichier.j2
dest: /etc/myfile.conf
owner: root
group: root
mode: 0644

5.4 fetch module

- 51/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/fetch_module.html
http://jinja.pocoo.org/docs/
http://jinja.pocoo.org/docs/
https://docs.ansible.com/ansible/latest/collections/ansible/builtin/template_module.html

5.6 get_url module

To upload files from a web site or ftp to one or more hosts, use the get_url module:

By providing a checksum of the file, the file will not be re-downloaded if it is

already present at the destination location and its checksum matches the value

provided.

- template:
src: /data/ansible/templates/vhost.j2
dest: /etc/httpd/sites-available/vhost.conf
owner: root
group: root
mode: 0644
validate: '/usr/sbin/apachectl -t'

- get_url:
url: http://site.com/archive.zip
dest: /tmp/archive.zip
mode: 0640
checksum:

sha256:f772bd36185515581aa9a2e4b38fb97940ff28764900ba708e68286121770e9a

5.6 get_url module

- 52/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

6. Ansible Galaxy: Collections and Roles

In this chapter you will learn how to use, install, and manage Ansible roles and

collections.

Objectives: In this chapter you will learn how to:

 install and manage collections.

 install and manage roles.

ansible, ansible-galaxy, roles, collections

Knowledge:

Complexity:

Reading time: 40 minutes

Ansible Galaxy provides Ansible Roles and Collections from the Ansible Community.

The elements provided can be referenced in the playbooks and used out of the box

6.1 ansible-galaxy command

The ansible-galaxy command manages roles and collections using

galaxy.ansible.com.

To manage roles:•

6. Ansible Galaxy: Collections and Roles

- 53/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://galaxy.ansible.com
http://galaxy.ansible.com

To manage collections:

6.2 Ansible Roles

An Ansible role is a unit that promotes the reusability of playbooks.

More information can be found here

6.2.1 Installing useful Roles

In order to highlight the interest of using roles, I suggest you to use the alemorvan/

patchmanagement role, which will allow you to perform a lot of tasks (pre-update or

post-update for example) during your update process, in only a few lines of code.

You can check the code in the github repo of the role here.

Install the role. This needs only one command:

ansible-galaxy role [import|init|install|login|remove|...]

Sub-commands Functionality

install installs a role.

remove remove one or more roles.

list display the name and the version of installed roles.

info display information about a role.

init generate a skeleton of a new role.

import import a role from the galaxy web site. Requires a login.

•

ansible-galaxy collection [import|init|install|login|remove|...]

Sub-commands Functionality

init generate a skeleton of a new collection.

install installs a collection.

list display the name and the version of installed collections.

Note

•

6.2 Ansible Roles

- 54/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://github.com/alemorvan/patchmanagement

Create a playbook to include the role:

With this role, you can add your own tasks for all your inventory or for only your

targeted node.

Let's create tasks that will be run before and after the update process:

Create the custom_tasks folder:

Create the custom_tasks/pm_before_update_tasks_file.yml (feel free to change the

name and the content of this file)

Create the custom_tasks/pm_after_update_tasks_file.yml (feel free to change the

name and the content of this file)

ansible-galaxy role install alemorvan.patchmanagement

•

- name: Start a Patch Management
hosts: ansible_clients
vars:

pm_before_update_tasks_file: custom_tasks/pm_before_update_tasks_file.yml
pm_after_update_tasks_file: custom_tasks/pm_after_update_tasks_file.yml

tasks:
- name: "Include patchmanagement"

include_role:
name: "alemorvan.patchmanagement"

•

mkdir custom_tasks

•

- name: sample task before the update process

debug:
msg: "This is a sample tasks, feel free to add your own test task"

•

- name: sample task after the update process

debug:
msg: "This is a sample tasks, feel free to add your own test task"

6.2.1 Installing useful Roles

- 55/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

And launch your first Patch Management:

ansible-playbook patchmanagement.yml

PLAY [Start a Patch Management]

TASK [Gathering Facts]

ok: [192.168.1.11]

TASK [Include patchmanagement]
**

TASK [alemorvan.patchmanagement : MAIN | Linux Patch Management Job]

ok: [192.168.1.11] => {

"msg": "Start 192 patch management"
}

...

TASK [alemorvan.patchmanagement : sample task before the update process]

ok: [192.168.1.11] => {

"msg": "This is a sample tasks, feel free to add your own test task"
}

...

TASK [alemorvan.patchmanagement : MAIN | We can now patch]
**
included: /home/ansible/.ansible/roles/alemorvan.patchmanagement/tasks/
patch.yml for 192.168.1.11

TASK [alemorvan.patchmanagement : PATCH | Tasks depends on distribution]

ok: [192.168.1.11] => {

"ansible_distribution": "Rocky"
}

TASK [alemorvan.patchmanagement : PATCH | Include tasks for CentOS & RedHat
tasks] **********************
included: /home/ansible/.ansible/roles/alemorvan.patchmanagement/tasks/
linux_tasks/redhat_centos.yml for 192.168.1.11

TASK [alemorvan.patchmanagement : RHEL CENTOS | yum clean all]

6.2.1 Installing useful Roles

- 56/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

**
changed: [192.168.1.11]

TASK [alemorvan.patchmanagement : RHEL CENTOS | Ensure yum-utils is installed]

ok: [192.168.1.11]

TASK [alemorvan.patchmanagement : RHEL CENTOS | Remove old kernels]

skipping: [192.168.1.11]

TASK [alemorvan.patchmanagement : RHEL CENTOS | Update rpm package with yum]

ok: [192.168.1.11]

TASK [alemorvan.patchmanagement : PATCH | Inlude tasks for Debian & Ubuntu
tasks] ***********************
skipping: [192.168.1.11]

TASK [alemorvan.patchmanagement : MAIN | We can now reboot]

included: /home/ansible/.ansible/roles/alemorvan.patchmanagement/tasks/
reboot.yml for 192.168.1.11

TASK [alemorvan.patchmanagement : REBOOT | Reboot triggered]
**
ok: [192.168.1.11]

TASK [alemorvan.patchmanagement : REBOOT | Ensure we are not in rescue mode]

ok: [192.168.1.11]

...

TASK [alemorvan.patchmanagement : FACTS | Insert fact file]

ok: [192.168.1.11]

TASK [alemorvan.patchmanagement : FACTS | Save date of last PM]

ok: [192.168.1.11]

...

TASK [alemorvan.patchmanagement : sample task after the update process]

ok: [192.168.1.11] => {

"msg": "This is a sample tasks, feel free to add your own test task"
}

6.2.1 Installing useful Roles

- 57/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Pretty easy for such a complex process, isn't it?

This is just one example of what can be done using roles made available by the

community. Have a look at galaxy.ansible.com to discover the roles that could be

useful for you!

You can also create your own roles for your own needs and publish them on the

Internet if you feel like it. This is what we will briefly cover in the next chapter.

6.2.2 Introduction to Role development

A role skeleton, serving as a starting point for custom role development, can be

generated by the ansible-galaxy command:

The command will generate the following tree structure to contain the rocky8 role:

PLAY RECAP

192.168.1.11 : ok=31 changed=1 unreachable=0 failed=0
skipped=4 rescued=0 ignored=0

$ ansible-galaxy role init rocky8
- Role rocky8 was created successfully

tree rocky8/
rocky8/
├── defaults
│ └── main.yml
├── files
├── handlers
│ └── main.yml
├── meta
│ └── main.yml
├── README.md
├── tasks
│ └── main.yml
├── templates
├── tests
│ ├── inventory
│ └── test.yml
└── vars

6.2.2 Introduction to Role development

- 58/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://galaxy.ansible.com/

Roles allow you to do away with the need to include files. There is no need to

specify file paths or include directives in playbooks. You just have to specify a task,

and Ansible takes care of the inclusions.

The structure of a role is fairly obvious to understand.

Variables are simply stored either in vars/main.yml if the variables are not to be

overridden, or in default/main.yml if you want to leave the possibility of overriding

the variable content from outside your role.

The handlers, files, and templates needed for your code are stored in handlers/

main.yml , files and templates respectively.

All that remains is to define the code for your role's tasks in tasks/main.yml .

Once all this is working well, you can use this role in your playbooks. You will be

able to use your role without worrying about the technical aspect of its tasks, while

customizing its operation with variables.

6.2.3 Practical work: create a first simple role

Let's implement this with a "go anywhere" role that will create a default user and

install software packages. This role can be systematically applied to all your

servers.

Variables

We will create a rockstar user on all of our servers. As we don't want this user to

be overridden, let's define it in the vars/main.yml :

└── main.yml

8 directories, 8 files

rocky8_default_group:

name: rockstar
gid: 1100

rocky8_default_user:
name: rockstar

6.2.3 Practical work: create a first simple role

- 59/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

We can now use those variables inside our tasks/main.yml without any inclusion.

To test your new role, let's create a test-role.yml playbook in the same directory

as your role:

and launch it:

uid: 1100
group: rockstar

- name: Create default group

group:
name: "{{ rocky8_default_group.name }}"
gid: "{{ rocky8_default_group.gid }}"

- name: Create default user
user:

name: "{{ rocky8_default_user.name }}"
uid: "{{ rocky8_default_user.uid }}"
group: "{{ rocky8_default_user.group }}"

- name: Test my role

hosts: localhost

roles:

- role: rocky8
become: true
become_user: root

ansible-playbook test-role.yml

PLAY [Test my role]

TASK [Gathering Facts]

**
ok: [localhost]

TASK [rocky8 : Create default group]

6.2.3 Practical work: create a first simple role

- 60/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Congratulations! You are now able to create great things with a playbook of only a

few lines.

Let's see the use of default variables.

Create a list of packages to install by default on your servers and an empty list of

packages to uninstall. Edit the defaults/main.yml files and add those two lists:

and use them in your tasks/main.yml :

Test your role with the help of the playbook previously created:

changed: [localhost]

TASK [rocky8 : Create default user]
**
changed: [localhost]

PLAY RECAP

localhost : ok=3 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

rocky8_default_packages:
- tree
- vim

rocky8_remove_packages: []

- name: Install default packages (can be overridden)
package:

name: "{{ rocky8_default_packages }}"
state: present

- name: "Uninstall default packages (can be overridden)
{{ rocky8_remove_packages }}"

package:
name: "{{ rocky8_remove_packages }}"
state: absent

ansible-playbook test-role.yml

PLAY [Test my role]

6.2.3 Practical work: create a first simple role

- 61/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can now override the rocky8_remove_packages in your playbook and uninstall for

example cockpit :

TASK [Gathering Facts]

**
ok: [localhost]

TASK [rocky8 : Create default group]

ok: [localhost]

TASK [rocky8 : Create default user]
**
ok: [localhost]

TASK [rocky8 : Install default packages (can be overridden)]
**
ok: [localhost]

TASK [rocky8 : Uninstall default packages (can be overridden) []]

ok: [localhost]

PLAY RECAP

localhost : ok=5 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

- name: Test my role

hosts: localhost
vars:

rocky8_remove_packages:
- cockpit

roles:

- role: rocky8
become: true
become_user: root

6.2.3 Practical work: create a first simple role

- 62/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Obviously, there is no limit to how much you can improve your role. Imagine that

for one of your servers, you need a package that is in the list of those to be

uninstalled. You could then, for example, create a new list that can be overridden

and then remove from the list of packages to be uninstalled those in the list of

specific packages to be installed by using the jinja difference() filter.

ansible-playbook test-role.yml

PLAY [Test my role]

TASK [Gathering Facts]

**
ok: [localhost]

TASK [rocky8 : Create default group]

ok: [localhost]

TASK [rocky8 : Create default user]
**
ok: [localhost]

TASK [rocky8 : Install default packages (can be overridden)]
**
ok: [localhost]

TASK [rocky8 : Uninstall default packages (can be overridden) ['cockpit']]

changed: [localhost]

PLAY RECAP

localhost : ok=5 changed=1 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

- name: "Uninstall default packages (can be overridden)
{{ rocky8_remove_packages }}"

package:
name: "{{ rocky8_remove_packages |

difference(rocky8_specifics_packages) }}"
state: absent

6.2.3 Practical work: create a first simple role

- 63/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

6.3 Ansible Collections

Collections are a distribution format for Ansible content that can include

playbooks, roles, modules, and plugins.

More information can be found here

To install or upgrade a collection:

You can then use the newly installed collection using its namespace and name

before the module's name or role's name:

You can find a collection index here.

Let's install the community.general collection:

We can now use the newly available module yum_versionlock :

Note

ansible-galaxy collection install namespace.collection [--upgrade]

- import_role:
name: namespace.collection.rolename

- namespace.collection.modulename:
option1: value

ansible-galaxy collection install community.general
Starting galaxy collection install process
Process install dependency map
Starting collection install process
Downloading https://galaxy.ansible.com/download/community-general-3.3.2.tar.gz
to /home/ansible/.ansible/tmp/ansible-local-51384hsuhf3t5/tmpr_c9qrt1/
community-general-3.3.2-f4q9u4dg
Installing 'community.general:3.3.2' to '/home/ansible/.ansible/collections/
ansible_collections/community/general'
community.general:3.3.2 was installed successfully

- name: Start a Patch Management
hosts: ansible_clients
become: true
become_user: root

6.3 Ansible Collections

- 64/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/collections_using.html
https://docs.ansible.com/ansible/latest/collections/index.html

tasks:

- name: Ensure yum-versionlock is installed
package:

name: python3-dnf-plugin-versionlock
state: present

- name: Prevent kernel from being updated
community.general.yum_versionlock:

state: present
name: kernel

register: locks

- name: Display locks
debug:

var: locks.meta.packages

ansible-playbook versionlock.yml

PLAY [Start a Patch Management]

TASK [Gathering Facts]

ok: [192.168.1.11]

TASK [Ensure yum-versionlock is installed]
**
changed: [192.168.1.11]

TASK [Prevent kernel from being updated]
**
changed: [192.168.1.11]

TASK [Display locks]

ok: [192.168.1.11] => {

"locks.meta.packages": [
"kernel"

]
}

PLAY RECAP

6.3 Ansible Collections

- 65/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

6.3.1 Creating your own collection

As with roles, you are able to create your own collection with the help of the

ansible-galaxy command:

You can then store your own plugins or roles inside this new collection.

192.168.1.11 : ok=4 changed=2 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

ansible-galaxy collection init rocky8.rockstarcollection
- Collection rocky8.rockstarcollection was created successfully

tree rocky8/rockstarcollection/
rocky8/rockstarcollection/
├── docs
├── galaxy.yml
├── plugins
│ └── README.md
├── README.md
└── roles

6.3.1 Creating your own collection

- 66/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

7. Ansible Deployments with Ansistrano

In this chapter you will learn how to deploy applications with the Ansible role

Ansistrano.

Objectives: In this chapter you will learn how to:

 Implement Ansistrano;

 Configure Ansistrano;

 Use shared folders and files between deployed versions;

 Deploying different versions of a site from git;

 React between deployment steps.

ansible, ansistrano, roles, deployments

Knowledge:

Complexity:

Reading time: 40 minutes

Ansistrano is an Ansible role to easily deploy PHP, Python, etc. applications. It is

based on the functionality of Capistrano.

7.1 Introduction

Ansistrano requires the following to run:

Ansible on the deployment machine,

rsync or git on the client machine.

It can download source code from rsync , git , scp , http , S3 , ...

For our deployment example, we will use the git protocol.

•

•

Note

7. Ansible Deployments with Ansistrano

- 67/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://ansistrano.com
http://capistranorb.com/

Ansistrano deploys applications by following these 5 steps:

Setup: create the directory structure to host the releases;

Update Code: downloading the new release to the targets;

Symlink Shared and Symlink: after deploying the new release, the current

symbolic link is modified to point to this new release;

Clean Up: to do some clean up (remove old versions).

The skeleton of a deployment with Ansistrano looks like this:

•

•

•

•

/var/www/site/
├── current -> ./releases/20210718100000Z
├── releases
│ └── 20210718100000Z
│ ├── css -> ../../shared/css/
│ ├── img -> ../../shared/img/
│ └── REVISION
├── repo
└── shared

├── css/
└── img/

7.1 Introduction

- 68/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can find all the Ansistrano documentation on its Github repository.

7.2 Labs

You will continue to work on your 2 servers:

The management server:

Ansible is already installed. You will have to install the ansistrano.deploy role.

The managed server:

You will need to install Apache and deploy the client site.

7.2.1 Deploying the Web server

For more efficiency, we will use the geerlingguy.apache role to configure the server:

We will probably need to open some firewall rules, so we will also install the

collection ansible.posix to work with its module firewalld :

•

•

$ ansible-galaxy role install geerlingguy.apache
Starting galaxy role install process
- downloading role 'apache', owned by geerlingguy
- downloading role from https://github.com/geerlingguy/ansible-role-apache/
archive/3.1.4.tar.gz
- extracting geerlingguy.apache to /home/ansible/.ansible/roles/
geerlingguy.apache
- geerlingguy.apache (3.1.4) was installed successfully

$ ansible-galaxy collection install ansible.posix
Starting galaxy collection install process
Process install dependency map
Starting collection install process
Downloading https://galaxy.ansible.com/download/ansible-posix-1.2.0.tar.gz to /
home/ansible/.ansible/tmp/ansible-local-519039bp65pwn/tmpsvuj1fw5/ansible-
posix-1.2.0-bhjbfdpw
Installing 'ansible.posix:1.2.0' to '/home/ansible/.ansible/collections/
ansible_collections/ansible/posix'
ansible.posix:1.2.0 was installed successfully

7.2 Labs

- 69/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://github.com/ansistrano/deploy

Once the role and the collection are installed, we can create the first part of our

playbook, which will:

Install Apache,

Create a target folder for our vhost ,

Create a default vhost ,

Open the firewall,

Start or restart Apache.

Technical considerations:

We will deploy our site to the /var/www/site/ folder.

As we will see later, ansistrano will create a current symbolic link to the current

release folder.

The source code to be deployed contains a html folder which the vhost should

point to. Its DirectoryIndex is index.htm .

The deployment is done by git , the package will be installed.

The target of our vhost will therefore be: /var/www/site/current/html .

Our playbook to configure the server: playbook-config-server.yml

•

•

•

•

•

•

•

•

•

Note

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
apache_global_vhost_settings: |

DirectoryIndex index.php index.htm
apache_vhosts:

- servername: "website"
documentroot: "{{ dest }}current/html"

tasks:

- name: create directory for website
file:

7.2.1 Deploying the Web server

- 70/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The playbook can be applied to the server:

Note the execution of the following tasks:

The geerlingguy.apache role makes our job much easier by taking care of the

installation and configuration of Apache.

You can check that everything is working by using curl :

path: /var/www/site/
state: directory
mode: 0755

- name: install git
package:

name: git
state: latest

- name: permit traffic in default zone for http service
ansible.posix.firewalld:

service: http
permanent: yes
state: enabled
immediate: yes

roles:
- { role: geerlingguy.apache }

ansible-playbook playbook-config-server.yml

TASK [geerlingguy.apache : Ensure Apache is installed on RHEL.]

TASK [geerlingguy.apache : Configure Apache.]

TASK [geerlingguy.apache : Add apache vhosts configuration.]

TASK [geerlingguy.apache : Ensure Apache has selected state and enabled on
boot.] ***
TASK [permit traffic in default zone for http service]

RUNNING HANDLER [geerlingguy.apache : restart apache]

$ curl -I http://192.168.1.11
HTTP/1.1 404 Not Found

7.2.1 Deploying the Web server

- 71/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

We have not yet deployed any code, so it is normal for curl to return a 404 HTTP code. But we can already confirm that the httpd

service is working and that the firewall is open.

7.2.2 Deploying the software

Now that our server is configured, we can deploy the application.

For this, we will use the ansistrano.deploy role in a second playbook dedicated to

application deployment (for more readability).

The sources of the software can be found in the github repository.

We will create a playbook playbook-deploy.yml to manage our deployment:

Date: Mon, 05 Jul 2021 23:30:02 GMT
Server: Apache/2.4.37 (rocky) OpenSSL/1.1.1g
Content-Type: text/html; charset=iso-8859-1

Note

$ ansible-galaxy role install ansistrano.deploy
Starting galaxy role install process
- downloading role 'deploy', owned by ansistrano
- downloading role from https://github.com/ansistrano/deploy/archive/
3.10.0.tar.gz
- extracting ansistrano.deploy to /home/ansible/.ansible/roles/
ansistrano.deploy
- ansistrano.deploy (3.10.0) was installed successfully

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git
ansistrano_deploy_to: "{{ dest }}"

roles:
- { role: ansistrano.deploy }

7.2.2 Deploying the software

- 72/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://github.com/alemorvan/demo-ansible.git

So many things done with only 11 lines of code!

$ ansible-playbook playbook-deploy.yml

PLAY [ansible_clients]

TASK [ansistrano.deploy : ANSISTRANO | Ensure deployment base path exists]

TASK [ansistrano.deploy : ANSISTRANO | Ensure releases folder exists]
TASK [ansistrano.deploy : ANSISTRANO | Ensure shared elements folder exists]
TASK [ansistrano.deploy : ANSISTRANO | Ensure shared paths exists]
TASK [ansistrano.deploy : ANSISTRANO | Ensure basedir shared files exists]
TASK [ansistrano.deploy : ANSISTRANO | Get release version]

TASK [ansistrano.deploy : ANSISTRANO | Get release path]
TASK [ansistrano.deploy : ANSISTRANO | GIT | Register ansistrano_git_result
variable]
TASK [ansistrano.deploy : ANSISTRANO | GIT | Set git_real_repo_tree]
TASK [ansistrano.deploy : ANSISTRANO | GIT | Create release folder]
TASK [ansistrano.deploy : ANSISTRANO | GIT | Sync repo subtree[""] to release
path]
TASK [ansistrano.deploy : ANSISTRANO | Copy git released version into REVISION
file]
TASK [ansistrano.deploy : ANSISTRANO | Ensure shared paths targets are absent]
TASK [ansistrano.deploy : ANSISTRANO | Create softlinks for shared paths and
files]
TASK [ansistrano.deploy : ANSISTRANO | Ensure .rsync-filter is absent]
TASK [ansistrano.deploy : ANSISTRANO | Setup .rsync-filter with shared-folders]
TASK [ansistrano.deploy : ANSISTRANO | Get current folder]
TASK [ansistrano.deploy : ANSISTRANO | Remove current folder if it's a
directory]
TASK [ansistrano.deploy : ANSISTRANO | Change softlink to new release]
TASK [ansistrano.deploy : ANSISTRANO | Clean up releases]

PLAY RECAP

**
192.168.1.11 : ok=25 changed=8 unreachable=0 failed=0 skipped=14
rescued=0 ignored=0

$ curl http://192.168.1.11
<html>
<head>
<title>Demo Ansible</title>
</head>

7.2.2 Deploying the software

- 73/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.2.3 Checking on the server

You can now connect by ssh to your client machine.

Make a tree on the /var/www/site/ directory:

Please note:

the current symlink to the release ./releases/20210722155312Z

the presence of a directory shared

the presence of the git repos in ./repo/

From the Ansible server, restart the deployment 3 times, then check on the client.

<body>
<h1>Version Master</h1>
</body>
<html>

•

$ tree /var/www/site/
/var/www/site
├── current -> ./releases/20210722155312Z
├── releases
│ └── 20210722155312Z
│ ├── REVISION
│ └── html
│ └── index.htm
├── repo
│ └── html
│ └── index.htm
└── shared

•

•

•

•

$ tree /var/www/site/
var/www/site
├── current -> ./releases/20210722160048Z
├── releases
│ ├── 20210722155312Z
│ │ ├── REVISION
│ │ └── html
│ │ └── index.htm
│ ├── 20210722160032Z
│ │ ├── REVISION
│ │ └── html

7.2.3 Checking on the server

- 74/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Please note:

ansistrano kept the 4 last releases,

the current link linked now to the lastest release

7.2.4 Limit the number of releases

The ansistrano_keep_releases variable is used to specify the number of releases to

keep.

Using the ansistrano_keep_releases variable, keep only 3 releases of the project.

Check.

│ │ └── index.htm
│ ├── 20210722160040Z
│ │ ├── REVISION
│ │ └── html
│ │ └── index.htm
│ └── 20210722160048Z
│ ├── REVISION
│ └── html
│ └── index.htm
├── repo
│ └── html
│ └── index.htm
└── shared

•

•

•

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git
ansistrano_deploy_to: "{{ dest }}"
ansistrano_keep_releases: 3

roles:
- { role: ansistrano.deploy }

$ ansible-playbook -i hosts playbook-deploy.yml

7.2.4 Limit the number of releases

- 75/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

On the client machine:

7.2.5 Using shared_paths and shared_files

$ tree /var/www/site/
/var/www/site
├── current -> ./releases/20210722160318Z
├── releases
│ ├── 20210722160040Z
│ │ ├── REVISION
│ │ └── html
│ │ └── index.htm
│ ├── 20210722160048Z
│ │ ├── REVISION
│ │ └── html
│ │ └── index.htm
│ └── 20210722160318Z
│ ├── REVISION
│ └── html
│ └── index.htm
├── repo
│ └── html
│ └── index.htm
└── shared

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git
ansistrano_deploy_to: "{{ dest }}"
ansistrano_keep_releases: 3
ansistrano_shared_paths:

- "img"
- "css"

ansistrano_shared_files:
- "logs"

roles:
- { role: ansistrano.deploy }

7.2.5 Using shared_paths and shared_files

- 76/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

On the client machine, create the file logs in the shared directory:

Then execute the playbook:

On the client machine:

sudo touch /var/www/site/shared/logs

TASK [ansistrano.deploy : ANSISTRANO | Ensure shared paths targets are absent]

ok: [192.168.10.11] => (item=img)
ok: [192.168.10.11] => (item=css)
ok: [192.168.10.11] => (item=logs/log)

TASK [ansistrano.deploy : ANSISTRANO | Create softlinks for shared paths and
files] **
changed: [192.168.10.11] => (item=img)
changed: [192.168.10.11] => (item=css)
changed: [192.168.10.11] => (item=logs)

$ tree -F /var/www/site/
/var/www/site/
├── current -> ./releases/20210722160631Z/
├── releases/
│ ├── 20210722160048Z/
│ │ ├── REVISION
│ │ └── html/
│ │ └── index.htm
│ ├── 20210722160318Z/
│ │ ├── REVISION
│ │ └── html/
│ │ └── index.htm
│ └── 20210722160631Z/
│ ├── REVISION
│ ├── css -> ../../shared/css/
│ ├── html/
│ │ └── index.htm
│ ├── img -> ../../shared/img/
│ └── logs -> ../../shared/logs
├── repo/
│ └── html/
│ └── index.htm
└── shared/

├── css/

7.2.5 Using shared_paths and shared_files

- 77/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Please note that the last release contains 3 links: css , img , and logs

from /var/www/site/releases/css to the ../../shared/css/ directory.

from /var/www/site/releases/img to the ../../shared/img/ directory.

from /var/www/site/releases/logs to the ../../shared/logs file.

Therefore, the files contained in these 2 folders and the logs file are always

accessible via the following paths:

/var/www/site/current/css/ ,

/var/www/site/current/img/ ,

/var/www/site/current/logs ,

but above all they will be kept from one release to the next.

7.2.6 Use a sub-directory of the repository for deployment

In our case, the repository contains a html folder, which contains the site files.

To avoid this extra level of directory, use the ansistrano_git_repo_tree variable by

specifying the path of the sub-directory to use.

Don't forget to modify the Apache configuration to take into account this change!

Change the playbook for the server configuration playbook-config-server.yml

├── img/
└── logs

•

•

•

•

•

•

•

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
apache_global_vhost_settings: |

DirectoryIndex index.php index.htm
apache_vhosts:

- servername: "website"
documentroot: "{{ dest }}current/" # <1>

7.2.6 Use a sub-directory of the repository for deployment

- 78/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

<1> Modify this line

Change the playbook for the deployment playbook-deploy.yml

<1> Modify this line

Don't forget to run both of the playbooks

Check on the client machine:

tasks:

- name: create directory for website
file:

path: /var/www/site/
state: directory
mode: 0755

- name: install git
package:

name: git
state: latest

roles:
- { role: geerlingguy.apache }

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git
ansistrano_deploy_to: "{{ dest }}"
ansistrano_keep_releases: 3
ansistrano_shared_paths:

- "img"
- "css"

ansistrano_shared_files:
- "log"

ansistrano_git_repo_tree: 'html' # <1>

roles:
- { role: ansistrano.deploy }

•

•

7.2.6 Use a sub-directory of the repository for deployment

- 79/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

<1> Please note the absence of html

7.2.7 Managing git branch or tags

The ansistrano_git_branch variable is used to specify a branch or tag to deploy.

Deploy the releases/v1.1.0 branch:

$ tree -F /var/www/site/
/var/www/site/
├── current -> ./releases/20210722161542Z/
├── releases/
│ ├── 20210722160318Z/
│ │ ├── REVISION
│ │ └── html/
│ │ └── index.htm
│ ├── 20210722160631Z/
│ │ ├── REVISION
│ │ ├── css -> ../../shared/css/
│ │ ├── html/
│ │ │ └── index.htm
│ │ ├── img -> ../../shared/img/
│ │ └── logs -> ../../shared/logs
│ └── 20210722161542Z/
│ ├── REVISION
│ ├── css -> ../../shared/css/
│ ├── img -> ../../shared/img/
│ ├── index.htm
│ └── logs -> ../../shared/logs
├── repo/
│ └── html/
│ └── index.htm
└── shared/

├── css/
├── img/
└── logs

•

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git

7.2.7 Managing git branch or tags

- 80/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can have fun, during the deployment, refreshing your browser, to see in 'live' the change.

Deploy the v2.0.0 tag:

ansistrano_deploy_to: "{{ dest }}"
ansistrano_keep_releases: 3
ansistrano_shared_paths:

- "img"
- "css"

ansistrano_shared_files:
- "log"

ansistrano_git_repo_tree: 'html'
ansistrano_git_branch: 'releases/v1.1.0'

roles:
- { role: ansistrano.deploy }

Note

$ curl http://192.168.1.11
<html>
<head>
<title>Demo Ansible</title>
</head>
<body>
<h1>Version 1.0.1</h1>
</body>
<html>

•

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git
ansistrano_deploy_to: "{{ dest }}"
ansistrano_keep_releases: 3
ansistrano_shared_paths:

- "img"
- "css"

ansistrano_shared_files:
- "log"

ansistrano_git_repo_tree: 'html'
ansistrano_git_branch: 'v2.0.0'

7.2.7 Managing git branch or tags

- 81/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.2.8 Actions between deployment steps

A deployment with Ansistrano respects the following steps:

Setup

Update Code

Symlink Shared

Symlink

Clean Up

It is possible to intervene before and after each of these steps.

roles:
- { role: ansistrano.deploy }

$ curl http://192.168.1.11
<html>
<head>
<title>Demo Ansible</title>
</head>
<body>
<h1>Version 2.0.0</h1>
</body>
<html>

•

•

•

•

•

7.2.8 Actions between deployment steps

- 82/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

A playbook can be included through the variables provided for this purpose:

ansistrano_before_<task>_tasks_file

or ansistrano_after_<task>_tasks_file

Easy example: send an email (or whatever you want like Slack notification) at the

beginning of the deployment:

•

•

•

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git
ansistrano_deploy_to: "{{ dest }}"
ansistrano_keep_releases: 3
ansistrano_shared_paths:

- "img"
- "css"

ansistrano_shared_files:
- "logs"

7.2.8 Actions between deployment steps

- 83/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Create the file deploy/before-setup-tasks.yml :

You will probably have to restart some services at the end of the deployment, to

flush caches for example. Let's restart Apache at the end of the deployment:

ansistrano_git_repo_tree: 'html'
ansistrano_git_branch: 'v2.0.0'
ansistrano_before_setup_tasks_file: "{{ playbook_dir }}/deploy/before-

setup-tasks.yml"

roles:
- { role: ansistrano.deploy }

- name: Send a mail

mail:
subject: Starting deployment on {{ ansible_hostname }}.

delegate_to: localhost

TASK [ansistrano.deploy : include]

included: /home/ansible/deploy/before-setup-tasks.yml for 192.168.10.11

TASK [ansistrano.deploy : Send a mail]

ok: [192.168.10.11 -> localhost]

[root] # mailx
Heirloom Mail version 12.5 7/5/10. Type ? for help.
"/var/spool/mail/root": 1 message 1 new
>N 1 root@localhost.local Tue Aug 21 14:41 28/946 "Starting deployment on
localhost."

•

- hosts: ansible_clients

become: yes
become_user: root
vars:

dest: "/var/www/site/"
ansistrano_deploy_via: "git"
ansistrano_git_repo: https://github.com/alemorvan/demo-ansible.git
ansistrano_deploy_to: "{{ dest }}"

7.2.8 Actions between deployment steps

- 84/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Create the file deploy/after-symlink-tasks.yml :

As you have seen during this chapter, Ansible can greatly improve the life of the

system administrator. Very intelligent roles like Ansistrano are "must haves" that

quickly become indispensable.

Using Ansistrano, ensures that good deployment practices are respected, reduces

the time needed to put a system into production, and avoids the risk of potential

human errors. The machine works fast, well, and rarely makes mistakes!

ansistrano_keep_releases: 3
ansistrano_shared_paths:

- "img"
- "css"

ansistrano_shared_files:
- "logs"

ansistrano_git_repo_tree: 'html'
ansistrano_git_branch: 'v2.0.0'
ansistrano_before_setup_tasks_file: "{{ playbook_dir }}/deploy/before-

setup-tasks.yml"
ansistrano_after_symlink_tasks_file: "{{ playbook_dir }}/deploy/after-

symlink-tasks.yml"

roles:
- { role: ansistrano.deploy }

- name: restart apache

systemd:
name: httpd
state: restarted

TASK [ansistrano.deploy : include]

included: /home/ansible/deploy/after-symlink-tasks.yml for 192.168.10.11

TASK [ansistrano.deploy : restart apache]

changed: [192.168.10.11]

7.2.8 Actions between deployment steps

- 85/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

8. Ansible - Large Scale infrastructure

In this chapter you will learn how to scale your configuration management system.

Objectives: In this chapter you will learn how to:

 Organize your code for large infrastructure;

 Apply all or part of your configuration management to a group of nodes;

ansible, config management, scale

Knowledge:

Complexity:

Reading time: 30 minutes

We have seen in the previous chapters how to organize our code in the form of

roles but also how to use some roles for the management of updates (patch

management) or the deployment of code.

What about configuration management? How to manage the configuration of tens,

hundreds, or even thousands of virtual machines with Ansible?

The advent of the cloud has changed the traditional methods a bit. The VM is

configured at deployment. If its configuration is no longer compliant, it is destroyed

and replaced by a new one.

The organization of the configuration management system presented in this

chapter will respond to these two ways of consuming IT: "one-shot" use or regular

"re-configuration" of a pool of servers.

However, be careful: using Ansible to ensure a pool of servers compliance requires

changing work habits. It is no longer possible to manually modify the configuration

of a service manager without seeing these modifications overwritten the next time

Ansible is run.

8. Ansible - Large Scale infrastructure

- 86/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

What we are going to set up below is not Ansible's favorite terrain. Technologies like Puppet or Salt will do much better. Let's

remember that Ansible is a Swiss army knife of automation and is agentless, which explains the differences in performance.

More information can be found here

8.1 Variables storage

The first thing we have to discuss is the separation between data and Ansible code.

As the code gets larger and more complex, it will be more and more complicated to

modify the variables it contains.

To ensure the maintenance of your site, the most important thing is correctly

separating the variables from the Ansible code.

We haven't discussed it here yet, but you should know that Ansible can

automatically load the variables it finds in specific folders depending on the

inventory name of the managed node, or its member groups.

The Ansible documentation suggests that we organize our code as below:

If the targeted node is hostname1 of group1 , the variables contained in the

hostname1.yml and group1.yml files will be automatically loaded. It's a nice way to

store all the data for all your roles in the same place.

In this way, the inventory file of your server becomes its identity card. It contains

all the variables that differ from the default variables for your server.

Note

Note

inventories/
production/

hosts # inventory file for production servers
group_vars/

group1.yml # here we assign variables to particular groups
group2.yml

host_vars/
hostname1.yml # here we assign variables to particular systems
hostname2.yml

8.1 Variables storage

- 87/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/sample_setup.html

From the point of view of centralization of variables, it becomes essential to

organize the naming of its variables in the roles by prefixing them, for example,

with the name of the role. It is also recommended to use flat variable names rather

than dictionaries.

For example, if you want to make the PermitRootLogin value in the sshd_config file

a variable, a good variable name could be sshd_config_permitrootlogin (instead of

sshd.config.permitrootlogin which could also be a good variable name).

8.2 About Ansible tags

The use of Ansible tags allows you to execute or skip a part of the tasks in your

code.

More information can be found here

For example, let's modify our users creation task:

You can now play only the tasks with the tag users with the ansible-playbook

option --tags :

You can also use the --skip-tags option.

Note

- name: add users
user:

name: "{{ item }}"
state: present
groups: "users"

loop:
- antoine
- patrick
- steven
- xavier

tags: users

ansible-playbook -i inventories/production/hosts --tags users site.yml

8.2 About Ansible tags

- 88/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_tags.html

8.3 About the directory layout

Let's focus on a proposal for the organization of files and directories necessary for

the proper functioning of a CMS (Content Management System).

Our starting point will be the site.yml file. This file is a bit like the orchestra

conductor of the CMS since it will only include the necessary roles for the target

nodes if needed:

Of course, those roles must be created under the roles directory at the same level

as the site.yml file.

I like to manage my global vars inside a vars/global_vars.yml , even if I could store

them inside a file located at inventories/production/group_vars/all.yml

I also like to keep the possibility of disabling a functionality. So I include my roles

with a condition and a default value like this:

- name: "Config Management for {{ target }}"

hosts: "{{ target }}"

roles:

- role: roles/functionality1

- role: roles/functionality2

- name: "Config Management for {{ target }}"

hosts: "{{ target }}"
vars_files:

- vars/global_vars.yml
roles:

- role: roles/functionality1

- role: roles/functionality2

- name: "Config Management for {{ target }}"

hosts: "{{ target }}"
vars_files:

8.3 About the directory layout

- 89/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Don't forget to use the tags:

You should get something like this:

- vars/global_vars.yml
roles:

- role: roles/functionality1
when:

- enable_functionality1|default(true)

- role: roles/functionality2
when:

- enable_functionality2|default(false)

- name: "Config Management for {{ target }}"
hosts: "{{ target }}"
vars_files:

- vars/global_vars.yml
roles:

- role: roles/functionality1
when:

- enable_functionality1|default(true)
tags:

- functionality1

- role: roles/functionality2
when:

- enable_functionality2|default(false)
tags:

- functionality2

$ tree cms
cms
├── inventories
│ └── production
│ ├── group_vars
│ │ └── plateform.yml
│ ├── hosts
│ └── host_vars
│ ├── client1.yml
│ └── client2.yml
├── roles
│ ├── functionality1
│ │ ├── defaults

8.3 About the directory layout

- 90/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

You are free to develop your roles within a collection

8.4 Tests

Let's launch the playbook and run some tests:

│ │ │ └── main.yml
│ │ └── tasks
│ │ └── main.yml
│ └── functionality2
│ ├── defaults
│ │ └── main.yml
│ └── tasks
│ └── main.yml
├── site.yml
└── vars

└── global_vars.yml

Note

$ ansible-playbook -i inventories/production/hosts -e "target=client1" site.yml

PLAY [Config Management for client1]
**

TASK [Gathering Facts]

ok: [client1]

TASK [roles/functionality1 : Task in functionality 1]

ok: [client1] => {

"msg": "You are in functionality 1"
}

TASK [roles/functionality2 : Task in functionality 2]

skipping: [client1]

PLAY RECAP

client1 : ok=2 changed=0 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

8.4 Tests

- 91/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

As you can see, by default, only the tasks of the functionality1 role are played.

Let's activate in the inventory the functionality2 for our targeted node and rerun

the playbook:

Try to apply only functionality2 :

$ vim inventories/production/host_vars/client1.yml

enable_functionality2: true

$ ansible-playbook -i inventories/production/hosts -e "target=client1" site.yml

PLAY [Config Management for client1]
**

TASK [Gathering Facts]

ok: [client1]

TASK [roles/functionality1 : Task in functionality 1]

ok: [client1] => {

"msg": "You are in functionality 1"
}

TASK [roles/functionality2 : Task in functionality 2]

ok: [client1] => {

"msg": "You are in functionality 2"
}

PLAY RECAP

client1 : ok=3 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

$ ansible-playbook -i inventories/production/hosts -e "target=client1" --tags
functionality2 site.yml

PLAY [Config Management for client1]
**

8.4 Tests

- 92/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Let's run on the whole inventory:

TASK [Gathering Facts]

ok: [client1]

TASK [roles/functionality2 : Task in functionality 2]

ok: [client1] => {

"msg": "You are in functionality 2"
}

PLAY RECAP

client1 : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

$ ansible-playbook -i inventories/production/hosts -e "target=plateform"
site.yml

PLAY [Config Management for plateform]
**

TASK [Gathering Facts]

ok: [client1]
ok: [client2]

TASK [roles/functionality1 : Task in functionality 1]

ok: [client1] => {

"msg": "You are in functionality 1"
}
ok: [client2] => {

"msg": "You are in functionality 1"
}

TASK [roles/functionality2 : Task in functionality 2]

ok: [client1] => {

"msg": "You are in functionality 2"
}
skipping: [client2]

8.4 Tests

- 93/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

As you can see, functionality2 is only played on the client1 .

8.5 Benefits

By following the advice given in the Ansible documentation, you will quickly obtain

a:

easily maintainable source code even if it contains a large number of roles

a relatively fast, repeatable compliance system that you can apply partially or

completely

can be adapted on a case-by-case basis and by servers

the specifics of your information system are separated from the code, easily audit-

able, and centralized in the inventory files of your configuration management.

PLAY RECAP

client1 : ok=3 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
client2 : ok=2 changed=0 unreachable=0 failed=0
skipped=1 rescued=0 ignored=0

•

•

•

•

8.5 Benefits

- 94/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

9. Ansible - Working with filters

In this chapter you will learn how to transform data with jinja filters.

Objectives: In this chapter you will learn how to:

 Transform data structures as dictionaries or lists;

 Transform variables.

ansible, jinja, filters

Knowledge:

Complexity:

Reading time: 20 minutes

We have already had the opportunity, during the previous chapters, to use the jinja

filters.

These filters, written in python, allow us to manipulate and transform our ansible

variables.

More information can be found here.

Throughout this chapter, we will use the following playbook to test the different

filters presented:

Note

- name: Manipulating the data
hosts: localhost
gather_facts: false
vars:

zero: 0
zero_string: "0"
non_zero: 4
true_booleen: True
true_non_booleen: "True"
false_boolean: False

9. Ansible - Working with filters

- 95/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.ansible.com/ansible/latest/user_guide/playbooks_filters.html

The following is a non-exhaustive list of filters that you are most likely to encounter or need. Fortunately, there are many others. You

could even write your own!

The playbook will be played as follows:

9.1 Converting data

Data can be converted from one type to another.

To know the type of a data (the type in python language), you have to use the

type_debug filter.

Example:

false_non_boolean: "False"
whatever: "It's false!"
user_name: antoine
my_dictionary:

key1: value1
key2: value2

my_simple_list:
- value_list_1
- value_list_2
- value_list_3

my_simple_list_2:
- value_list_3
- value_list_4
- value_list_5

my_list:
- element: element1

value: value1
- element: element2

value: value2

tasks:
- name: Print an integer

debug:
var: zero

Note

ansible-playbook play-filter.yml

9.1 Converting data

- 96/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

which gives us:

It is possible to transform an integer into a string:

Transform a string into an integer:

or a variable into a boolean:

- name: Display the type of a variable
debug:

var: true_boolean|type_debug

TASK [Display the type of a variable]
**
ok: [localhost] => {

"true_boolean|type_debug": "bool"
}

- name: Transforming a variable type
debug:

var: zero|string

TASK [Transforming a variable type]

ok: [localhost] => {

"zero|string": "0"
}

- name: Transforming a variable type
debug:

var: zero_string|int

- name: Display an integer as a boolean
debug:

var: non_zero | bool

- name: Display a string as a boolean
debug:

var: true_non_boolean | bool

- name: Display a string as a boolean
debug:

var: false_non_boolean | bool

9.1 Converting data

- 97/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

A character string can be transformed into upper or lower case:

which gives us:

The replace filter allows you to replace characters by others.

Here we remove spaces or even replace a word:

which gives us:

- name: Display a string as a boolean
debug:

var: whatever | bool

- name: Lowercase a string of characters
debug:

var: whatever | lower

- name: Upercase a string of characters
debug:

var: whatever | upper

TASK [Lowercase a string of characters]

ok: [localhost] => {

"whatever | lower": "it's false!"
}

TASK [Upercase a string of characters]

ok: [localhost] => {

"whatever | upper": "IT'S FALSE!"
}

- name: Replace a character in a string
debug:

var: whatever | replace(" ", "")

- name: Replace a word in a string
debug:

var: whatever | replace("false", "true")

9.1 Converting data

- 98/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The split filter splits a string into a list based on a character:

9.2 Join the elements of a list

It is frequent to have to join the different elements in a single string. We can then

specify a character or a string to insert between each element.

which gives us:

TASK [Replace a character in a string]

ok: [localhost] => {

"whatever | replace(\" \", \"\")": "It'sfalse!"
}

TASK [Replace a word in a string]

ok: [localhost] => {

"whatever | replace(\"false\", \"true\")": "It's true !"
}

- name: Cutting a string of characters
debug:

var: whatever | split(" ", "")

TASK [Cutting a string of characters]

ok: [localhost] => {

"whatever | split(\" \")": [
"It's",
"false!"

]
}

- name: Joining elements of a list
debug:

var: my_simple_list|join(",")

- name: Joining elements of a list
debug:

var: my_simple_list|join(" | ")

9.2 Join the elements of a list

- 99/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

9.3 Transforming dictionaries into lists (and vice versa)

The filters dict2items and itemstodict , a bit more complex to implement, are

frequently used, especially in loops.

Note that it is possible to specify the name of the key and of the value to use in the

transformation.

TASK [Joining elements of a list]

ok: [localhost] => {

"my_simple_list|join(\",\")": "value_list_1,value_list_2,value_list_3"
}

TASK [Joining elements of a list]

ok: [localhost] => {

"my_simple_list|join(\" | \")": "value_list_1 | value_list_2 |
value_list_3"
}

- name: Display a dictionary
debug:

var: my_dictionary

- name: Transforming a dictionary into a list
debug:

var: my_dictionary | dict2items

- name: Transforming a dictionary into a list
debug:

var: my_dictionary | dict2items(key_name='key', value_name='value')

- name: Transforming a list into a dictionary
debug:

var: my_list | items2dict(key_name='element', value_name='value')

TASK [Display a dictionary]

ok: [localhost] => {

"my_dictionary": {
"key1": "value1",
"key2": "value2"

}

9.3 Transforming dictionaries into lists (and vice versa)

- 100/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

9.4 Working with lists

It is possible to merge or filter data from one or more lists:

}

TASK [Transforming a dictionary into a list]

ok: [localhost] => {

"my_dictionary | dict2items": [
{

"key": "key1",
"value": "value1"

},
{

"key": "key2",
"value": "value2"

}
]

}

TASK [Transforming a dictionary into a list]

ok: [localhost] => {

"my_dictionary | dict2items (key_name = 'key', value_name = 'value')": [
{

"key": "key1",
"value": "value1"

},
{

"key": "key2",
"value": "value2"

}
]

}

TASK [Transforming a list into a dictionary]
**
ok: [localhost] => {

"my_list | items2dict(key_name='element', value_name='value')": {
"element1": "value1",
"element2": "value2"

}
}

9.4 Working with lists

- 101/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

To keep only the intersection of the 2 lists (the values present in the 2 lists):

Or on the contrary keep only the difference (the values that do not exist in the

second list):

- name: Merger of two lists
debug:

var: my_simple_list | union(my_simple_list_2)

ok: [localhost] => {
"my_simple_list | union(my_simple_list_2)": [

"value_list_1",
"value_list_2",
"value_list_3",
"value_list_4",
"value_list_5"

]
}

- name: Merger of two lists
debug:

var: my_simple_list | intersect(my_simple_list_2)

TASK [Merger of two lists]

ok: [localhost] => {

"my_simple_list | intersect(my_simple_list_2)": [
"value_list_3"

]
}

- name: Merger of two lists
debug:

var: my_simple_list | difference(my_simple_list_2)

TASK [Merger of two lists]

ok: [localhost] => {

"my_simple_list | difference(my_simple_list_2)": [
"value_list_1",
"value_list_2",

9.4 Working with lists

- 102/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

If your list contains non-unique values, it is also possible to filter them with the

unique filter.

9.5 Transformation json/yaml

You may have to import json data (from an API for example) or export data in yaml

or json.

9.6 Default values, optional variables, protect variables

You will quickly be confronted with errors in the execution of your playbooks if you

do not provide default values for your variables, or if you do not protect them.

]
}

- name: Unique value in a list
debug:

var: my_simple_list | unique

- name: Display a variable in yaml
debug:

var: my_list | to_nice_yaml(indent=4)

- name: Display a variable in json
debug:

var: my_list | to_nice_json(indent=4)

TASK [Display a variable in yaml]
**
ok: [localhost] => {

"my_list | to_nice_yaml(indent=4)": "- element: element1\n value:
value1\n- element: element2\n value: value2\n"
}

TASK [Display a variable in json]
**
ok: [localhost] => {

"my_list | to_nice_json(indent=4)": "[\n {\n \"element\":
\"element1\",\n \"value\": \"value1\"\n },\n {\n
\"element\": \"element2\",\n \"value\": \"value2\"\n }\n]"
}

9.5 Transformation json/yaml

- 103/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The value of a variable can be substituted for another one if it does not exist with

the default filter:

Note the presence of the apostrophe ' which should be protected, for example, if

you were using the shell module:

Finally, an optional variable in a module can be ignored if it does not exist with the

keyword omit in the default filter, which will save you an error at runtime.

9.7 Associate a value according to another one (ternary)

Sometimes you need to use a condition to assign a value to a variable, in which

case it is common to go through a set_fact step.

- name: Default value
debug:

var: variablethatdoesnotexists | default(whatever)

TASK [Default value]

*
ok: [localhost] => {

"variablethatdoesnotexists | default(whatever)": "It's false!"
}

- name: Default value
debug:

var: variablethatdoesnotexists | default(whatever| quote)

TASK [Default value]

*
ok: [localhost] => {

"variablethatdoesnotexists | default(whatever|quote)": "'It'\"'\"'s
false!'"
}

- name: Add a new user
ansible.builtin.user:

name: "{{ user_name }}"
comment: "{{ user_comment | default(omit) }}"

9.7 Associate a value according to another one (ternary)

- 104/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

This can be avoided by using the ternary filter:

9.8 Some other filters

{{ 10000 | random }} : as its name indicates, gives a random value.

{{ my_simple_list | first }} : extracts the first element of the list.

{{ my_simple_list | length }} : gives the length (of a list or a string).

{{ ip_list | ansible.netcommon.ipv4 }} : only displays v4 IPs. Without dwelling on

this, if you need, there are many filters dedicated to the network.

{{ user_password | password_hash('sha512') }} : generates a hashed password in

sha512.

- name: Default value
debug:

var: (user_name == 'antoine') | ternary('admin', 'normal_user')

TASK [Default value]

*
ok: [localhost] => {

"(user_name == 'antoine') | ternary('admin', 'normal_user')": "admin"
}

•

•

•

•

•

9.8 Some other filters

- 105/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

10. Management server optimizations

In this chapter, we will review the configuration options that may be of interest to

optimize our Ansible management server.

10. Management server optimizations

- 106/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

10.1 The ansible.cfg configuration file

Some interesting configuration options to comment on:

10.1 The ansible.cfg configuration file

- 107/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

forks : by default to 5, it is the number of processes that Ansible will launch in

parallel to communicate with remote hosts. The higher this number is, the more

clients Ansible will be able to manage at the same time, and thus speed up

processing. The value you can set is dependent on the CPU/RAM limits of your

management server. Note that the default value, 5 , is very small, the Ansible

documentation states that many users set it to 50, even 500 or more.

gathering : this variable changes the policy for collecting facts. By default, the

value is implicit , which implies that facts will be collected systematically.

Switching this variable to smart allows for collection facts only when they have

not already been collected. Coupled with a facts cache (see below), this option

can greatly increase performance.

host_key_checking : Be careful with your server security! However, if you are in

control of your environment, it can be interesting to disable the key control of

remote servers and save some time at the connection. You can also, on remote

servers, disable the use of the DNS of the SSH server (in /etc/ssh/sshd_config ,

option UseDNS no), this option wastes time at the connection and is, most of the

time, only used in the connection logs.

ansible_managed : This variable, containing Ansible managed by default, is typically

used in file templates that are deployed on remote servers. It allows you to

specify to an administrator that the file is managed automatically and that any

changes they make to it will potentially be lost. It can be interesting to let the

administrators have a more complete message. Be careful though, if you change

this variable, it may cause daemons to restart (via the handlers associated with

the templates).

ssh_args = -C -o ControlMaster=auto -o ControlPersist=300s -o

PreferredAuthentications=publickey : specify the ssh connection options. By

disabling all authentication methods other than public key, you can save a lot of

time. You can also increase the ControlPersist to improve performance (the

documentation suggests that a value equivalent to 30 minutes may be

appropriate). The connection to a client will stay open longer and can be reused

when reconnecting to the same server, which is a significant time saving.

control_path_dir : Specify the path to the connection sockets. If this path is too

long, it can cause problems. Consider changing it to something short, such as /

tmp/.cp .

•

•

•

•

•

•

10.1 The ansible.cfg configuration file

- 108/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

pipelining : Setting this value to True increases performance by reducing the

number of SSH connections needed when running remote modules. You must first

make sure that the requiretty option is disabled in the sudoers options (see

documentation).

10.2 Caching the facts

Gathering facts is a process that can take some time. It can be interesting to

disable this gathering for playbooks that don't need it (via gather_facts option) or

to keep these facts in memory in a cache for a certain period of time (for example

24H).

These facts can be easily stored in a redis database:

Don't forget to modify the ansible configuration:

To check the correct operation, it is enough to request the redis server:

10.3 Using Vault

The various passwords and secrets cannot be stored in clear text with the Ansible

source code, either locally on the management server or on a possible source code

manager.

Ansible proposes using an encryption manager: ansible-vault .

•

sudo yum install redis
sudo systemctl start redis
sudo systemctl enable redis
sudo pip3 install redis

fact_caching = redis
fact_caching_timeout = 86400
fact_caching_connection = localhost:6379:0

redis-cli
127.0.0.1:6379> keys *
127.0.0.1:6379> get ansible_facts_SERVERNAME

10.2 Caching the facts

- 109/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

The principle is to encrypt a variable or a whole file with the ansible-vault

command.

Ansible will be able to decrypt this file at runtime by retrieving the encryption key

from the file (for example) /etc/ansible/ansible.cfg . The latter can also be a

python script or other.

Edit the /etc/ansible/ansible.cfg file:

Store the password in this file /etc/ansible/vault_pass and assign necessary

restrictive rights:

You can then encrypt your files with the command:

A file encrypted by ansible-vault can be easily recognized by its header:

Once a file is encrypted, it can still be edited with the command:

You can also deport your password storage to any password manager.

#vault_password_file = /path/to/vault_password_file
vault_password_file = /etc/ansible/vault_pass

mysecretpassword

ansible-vault encrypt myfile.yml

$ANSIBLE_VAULT;1.1;AES256
3537653234366335333061313366383462613631623432396433373536333339613661326638396
6
6664322261633261356566383438393738386165333966660a34303266323334376263393631363
0
3437323012456166376630613465623538623332396433623933666165343366303663333436666
1
6434656630306261650a31336463626139393131373936393133666438653633376632626463333
0
6334

ansible-vault edit myfile.yml

10.3 Using Vault

- 110/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

For example, to retrieve a password that would be stored in the rundeck vault:

10.4 Working with Windows servers

It will be necessary to install on the management server several packages:

Via the package manager:

and configure the /etc/krb5.conf file to specify the correct realms :

#!/usr/bin/env python
-*- coding: utf-8 -*-
import urllib.request
import io
import ssl

def get_password():
'''

 :return: Vault password
 :return_type: str
 '''

ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE

url = 'https://rundeck.rockylinux.org/api/11/storage/keys/ansible/vault'
req = urllib.request.Request(url, headers={

'Accept': '*/*',
'X-Rundeck-Auth-Token': '****token-rundeck****'
})

response = urllib.request.urlopen(req, context=ctx)

return response.read().decode('utf-8')

if __name__ == '__main__':
print(get_password())

•

sudo dnf install python38-devel krb5-devel krb5-libs krb5-workstation

[realms]
ROCKYLINUX.ORG = {

kdc = dc1.rockylinux.org
kdc = dc2.rockylinux.org

}

10.4 Working with Windows servers

- 111/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

Via the python package manager:

10.5 Working with IP modules

Network modules usually require the netaddr python module:

10.6 Generating a CMDB

A tool, ansible-cmdb has been developed to generate a CMDB from ansible.

The facts must be exported by ansible with the following command:

You can then generate a global json file:

If you prefer a web interface:

[domain_realm]
.rockylinux.org = ROCKYLINUX.ORG

•

pip3 install pywinrm
pip3 install pywinrm[credssp]
pip3 install kerberos requests-kerberos

sudo pip3 install netaddr

pip3 install ansible-cmdb

ansible --become --become-user=root -o -m setup --tree /var/www/ansible/cmdb/
out/

ansible-cmdb -t json /var/www/ansible/cmdb/out/linux > /var/www/ansible/cmdb/
cmdb-linux.json

ansible-cmdb -t html_fancy_split /var/www/ansible/cmdb/out/

10.5 Working with IP modules

- 112/113 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/

Learning Ansible with Rocky (English version) Copyright © 2023 The Rocky Enterprise Software Foundation

	Learning Ansible with Rocky (English version)
	Version : 2025/07/02

	1. Licence
	2. Learning Ansible with Rocky
	3. Ansible Basics
	3.1 The Ansible vocabulary
	3.2 Installation on the management server
	3.2.1 Installation from EPEL
	3.2.2 Installation from python pip

	3.3 Configuration files
	3.3.1 The inventory file /etc/ansible/hosts

	3.4 ansible command line usage
	3.4.1 Preparing the client
	3.4.2 Test with the ping module

	3.5 Key authentication
	3.5.1 Creating an SSH key
	3.5.2 Private key authentication test

	3.6 Using Ansible
	3.6.1 The modules
	Example of software installation

	3.6.2 Exercises
	setup module: introduction to facts

	3.7 Playbooks
	3.7.1 Example of Apache and MySQL playbook

	3.8 Exercises results

	4. Ansible Intermediate
	4.1 The variables
	4.1.1 Outsourcing variables
	4.1.2 Display a variable
	4.1.3 Save the return of a task
	4.1.4 Exercises:

	4.2 Loop management
	4.2.1 Exercises:

	4.3 Conditionals
	4.3.1 Exercises:

	4.4 Managing changes: the handlers
	4.5 Asynchronous tasks
	4.6 Exercise results

	5. Ansible - Management of Files
	5.1 ini_file module
	5.2 lineinfile module
	5.3 copy module
	5.4 fetch module
	5.5 template module
	5.6 get_url module

	6. Ansible Galaxy: Collections and Roles
	6.1 ansible-galaxy command
	6.2 Ansible Roles
	6.2.1 Installing useful Roles
	6.2.2 Introduction to Role development
	6.2.3 Practical work: create a first simple role
	Variables

	6.3 Ansible Collections
	6.3.1 Creating your own collection

	7. Ansible Deployments with Ansistrano
	7.1 Introduction
	7.2 Labs
	7.2.1 Deploying the Web server
	7.2.2 Deploying the software
	7.2.3 Checking on the server
	7.2.4 Limit the number of releases
	7.2.5 Using shared_paths and shared_files
	7.2.6 Use a sub-directory of the repository for deployment
	7.2.7 Managing git branch or tags
	7.2.8 Actions between deployment steps

	8. Ansible - Large Scale infrastructure
	8.1 Variables storage
	8.2 About Ansible tags
	8.3 About the directory layout
	8.4 Tests
	8.5 Benefits

	9. Ansible - Working with filters
	9.1 Converting data
	9.2 Join the elements of a list
	9.3 Transforming dictionaries into lists (and vice versa)
	9.4 Working with lists
	9.5 Transformation json/yaml
	9.6 Default values, optional variables, protect variables
	9.7 Associate a value according to another one (ternary)
	9.8 Some other filters

	10. Management server optimizations
	10.1 The ansible.cfg configuration file
	10.2 Caching the facts
	10.3 Using Vault
	10.4 Working with Windows servers
	10.5 Working with IP modules
	10.6 Generating a CMDB

