
Learning Bash with Rocky

(English version)

A book from the Documentation Team

Version : 2025/07/03

Rocky Documentation Team

Copyright © 2023 The Rocky Enterprise Software Foundation

Table of contents

41. Licence

52. Learning Bash with Rocky

52.1 Generalities

73. Bash - First script

73.1 My first script

104. Bash - Using Variables

104.1 Storing information for later use

124.2 Delete and lock variables

134.3 Use environment variables

144.4 Substitute commands

175. Bash - Data entry and manipulations

175.1 The read command

195.2 The cut command

205.3 The tr command

205.4 Extract the name and path of a file

215.5 Arguments of a script

235.5.1 The shift command

245.5.2 The set command

266. Bash - Check your knowledge

287. Bash - Tests

307.1 Testing the type of a file

327.2 Compare two files

327.3 Testing variables

327.4 Testing strings

337.5 Comparison of integer numbers

347.6 Combined tests

347.7 Numerical operations

357.8 The typeset command

357.9 The let command

378. Bash - Loops

378.1 The while conditional loop structure

388.2 The exit command

398.3 The break / continue commands

398.4 The true / false commands

408.5 The until conditional loop structure

Table of contents

- 2/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

408.6 The alternative choice structure select

428.7 The loop structure on a list of values for

449. Bash - Check your knowledge

Table of contents

- 3/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

1. Licence

RockyLinux offers Linux courseware for trainers or people wishing to learn how to

administer a Linux system on their own.

RockyLinux materials are published under Creative Commons-BY-SA. This means

you are free to share and transform the material, while respecting the author's

rights.

BY : Attribution. You must cite the name of the original author.

SA : Share Alike.

Creative Commons-BY-SA licence : https://creativecommons.org/licenses/by-sa/

4.0/

The documents and their sources are freely downloadable from:

https://docs.rockylinux.org

https://github.com/rocky-linux/documentation

Our media sources are hosted at github.com. You'll find the source code repository

where the version of this document was created.

From these sources, you can generate your own personalized training material

using mkdocs. You will find instructions for generating your document here.

How can I contribute to the documentation project?

You'll find all the information you need to join us on our git project home page.

We wish you all a pleasant reading and hope you enjoy the content.

•

•

•

1. Licence

- 4/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/
https://github.com/rocky-linux/documentation
https://www.mkdocs.org/
https://github.com/rocky-linux/documentation/tree/main/build_pdf
https://github.com/rocky-linux/documentation

2. Learning Bash with Rocky

In this section, you will learn more about Bash scripting, an exercise that every

administrator will have to perform one day or another.

2.1 Generalities

The shell is the command interpreter of Linux. It is a binary that is not part of the

kernel, but forms an additional layer, hence its name "shell".

It parses the commands entered by the user and then executes them by the system.

There are several shells, all of which share some common features. The user is free

to use the one that suits them best. Some examples are:

the Bourne-Again shell (bash),

the Korn shell (ksh),

the C shell (csh),

etc.

bash is present by default in most (all) Linux distributions. It is characterized by its

practical and user-friendly features.

The shell is also a basic programming language which, thanks to some

dedicated commands, allows:

the use of variables,

conditional execution of commands,

the repetition of commands.

Shell scripts have the advantage that they can be created quickly and reliably,

without compiling or installing additional commands. A shell script is just a text

file without any embellishments (bold, italics, etc.).

Although the shell is a "basic" programming language, it is still very powerful and sometimes faster than badly compiled code.

•

•

•

•

•

•

•

Note

2. Learning Bash with Rocky

- 5/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

To write a shell script, you just have to put all the necessary commands in a single

text file. By making this file executable the shell reads it sequentially, and executes

the commands in it one by one. It is also possible to execute it by passing the name

of the script as an argument to the bash binary.

When the shell encounters an error, it displays a message to identify the problem

but continues to execute the script. But there are mechanisms to stop the

execution of a script when an error occurs. Command-specific errors are also

displayed on the screen or inside files.

What is a good script? It is:

reliable: its operation is flawless even in case of misuse;

commented: its code is annotated to facilitate the rereading and future

evolution;

readable: the code is indented appropriately, the commands are spaced out, ...

portable: the code runs on any Linux system, dependency management, rights

management, etc.

•

•

•

•

2.1 Generalities

- 6/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

3. Bash - First script

In this chapter you will learn how to write your first script in bash.

Objectives: In this chapter you will learn how to:

 Write your first script in bash;

 Execute your first script;

 Specify which shell to use with the so-called shebang;

linux, script, bash

Knowledge:

Complexity:

Reading time: 10 minutes

3.1 My first script

To start writing a shell script, it is convenient to use a text editor that supports

syntax highlighting.

vim , for example, is a good tool for this.

The name of the script should respect some rules:

no names of existing commands;

only alphanumeric characters, i.e. no accented characters or spaces;

extension .sh to indicate that it is a shell script.

The author uses the "$" throughout these lessons to indicate the user's command-prompt.

•

•

•

Note

#!/usr/bin/env bash
#
Author : Rocky Documentation Team

3. Bash - First script

- 7/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

To be able to run this script, as an argument to bash:

Or, more simply, after having given it the right to execute:

To execute the script, it needs to be called with ./ before its name when you are in the directory where the script resides. If not in

that directory, you will need to call it with the entire path to the script, OR place it in a directory that is within your PATH

environment variable: (Examples: /usr/local/sbin , /usr/local/bin , etc.) The interpreter will refuse to execute a script present in the

current directory without indicating a path (here with ./ before it).

The chmod command is to be passed only once on a newly created script.

The first line to be written in any script is to indicate the name of the shell binary

to be used to execute it. If you want to use the ksh shell or the interpreted

language python , you would replace the line:

with :

or with :

Date: March 2022
Version 1.0.0: Displays the text "Hello world!"
#

Displays a text on the screen :
echo "Hello world!"

$ bash hello-world.sh
Hello world !

$ chmod u+x ./hello-world.sh
$./hello-world.sh
Hello world !

Note

#!/usr/bin/env bash

#!/usr/bin/env ksh

#!/usr/bin/env python

3.1 My first script

- 8/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

This first line is called the shebang . It starts with the characters #! followed by the

path to the binary of the command interpreter to use.

You may have encountered the "shebang" in a script that you've looked at that does not contain the "env" section and simply contains

the interpreter to use. (Example: #!/bin/bash). The author's method is considered to be the recommended and proper way to format

the "shebang".

Why is the author's method recommended? Because it increases the portability of the script. If for some reason the interpreter lived

in an entirely different directory, the interpreter would still be found if you used the author's method.

Throughout the writing process, you should think about proofreading the script,

using comments in particular:

a general presentation, at the beginning, to indicate the purpose of the script, its

author, its version, its use, etc.

during the text to help understand the actions.

Comments can be placed on a separate line or at the end of a line containing a

command.

Example:

About the shebang

•

•

This program displays the date
date # This line is the line that displays the date!

3.1 My first script

- 9/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

4. Bash - Using Variables

In this chapter you will learn how to use variables in your bash scripts.

Objectives: In this chapter you will learn how to:

 Store information for later use;

 Delete and lock variables;

 Use environment variables;

 Substitute commands;

linux, script, bash, variable

Knowledge:

Complexity:

Reading time: 10 minutes

4.1 Storing information for later use

As in any programming language, the shell script uses variables. They are used to

store information in memory to be reused as needed during the script.

A variable is created when it receives its content. It remains valid until the end of

the execution of the script or at the explicit request of the script author. Since the

script is executed sequentially from start to finish, it is impossible to call a variable

before it is created.

The content of a variable can be changed during the script, as the variable

continues to exist until the script ends. If the content is deleted, the variable

remains active but contains nothing.

The notion of a variable type in a shell script is possible but is very rarely used. The

content of a variable is always a character or a string.

4. Bash - Using Variables

- 10/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

This script makes use of variables. The name of a variable must start with a letter

but can contain any sequence of letters or numbers. Except for the underscore "_",

special characters cannot be used.

By convention, variables created by a user have a name in lower case. This name

must be chosen with care so as not to be too evasive or too complicated. However,

a variable can be named with upper case letters, as in this case, if it is a global

variable that should not be modified by the program.

The character = assigns content to a variable:

There is no space before or after the = sign.

#!/usr/bin/env bash

#
Author : Rocky Documentation Team
Date: March 2022
Version 1.0.0: Save in /root the files passwd, shadow, group, and gshadow
#

Global variables
FILE1=/etc/passwd
FILE2=/etc/shadow
FILE3=/etc/group
FILE4=/etc/gshadow

Destination folder
DESTINATION=/root

Clear the screen
clear

Launch the backup
echo "Starting the backup of $FILE1, $FILE2, $FILE3, $FILE4 to $DESTINATION:"

cp $FILE1 $FILE2 $FILE3 $FILE4 $DESTINATION

echo "Backup ended!"

variable=value
rep_name="/home"

4.1 Storing information for later use

- 11/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Once the variable is created, it can be used by prefixing it with a dollar $.

It is strongly recommended to protect variables with quotes, as in this example

below:

As the content of the variable contains a space, the first touch will create 2 files

while the second touch will create a file whose name will contain a space.

To isolate the name of the variable from the rest of the text, you must use quotes or

braces:

The systematic use of braces is recommended.

The use of apostrophes inhibits the interpretation of special characters.

4.2 Delete and lock variables

The unset command allows for the deletion of a variable.

Example:

file=file_name
touch $file

file=file name
touch $file
touch "$file"

file=file_name
touch "$file"1
touch ${file}1

message="Hello"
echo "This is the content of the variable message: $message"
Here is the content of the variable message: Hello
echo 'Here is the content of the variable message: $message'
Here is the content of the variable message: $message

name="NAME"
firstname="Firstname"
echo "$name $firstname"

4.2 Delete and lock variables

- 12/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

The readonly or typeset -r command locks a variable.

Example:

A set -u at the beginning of the script will stop the execution of the script if undeclared variables are used.

4.3 Use environment variables

Environment variables and system variables are variables used by the system

for its operation. By convention these are named with capital letters.

Like all variables, they can be displayed when a script is executed. Even if this is

strongly discouraged, they can also be modified.

The env command displays all the environment variables used.

The set command displays all used system variables.

NAME Firstname
unset firstname
echo "$name $firstname"
NAME

name="NAME"
readonly name
name="OTHER NAME"
bash: name: read-only variable
unset name
bash: name: read-only variable

Note

4.3 Use environment variables

- 13/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Among the dozens of environment variables, several are of interest to be used in a

shell script:

The export command allows you to export a variable.

A variable is only valid in the environment of the shell script process. In order for

the child processes of the script to know the variables and their contents, they

must be exported.

The modification of a variable exported in a child process cannot be traced back to

the parent process.

Without any option, the export command displays the name and values of the exported variables in the environment.

4.4 Substitute commands

It is possible to store the result of a command in a variable.

This operation is only valid for commands that return a message at the end of their execution.

The syntax for sub-executing a command is as follows:

Example:

Variables Description

HOSTNAME Host name of the machine.

USER , USERNAME and LOGNAME Name of the user connected to the session.

PATH Path to find the commands.

PWD Current directory, updated each time the cd command is executed.

HOME Login directory.

$$ Process id of the script execution.

$? Return code of the last command executed.

Note

Note

variable=`command`
variable=$(command) # Preferred syntax

4.4 Substitute commands

- 14/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

With everything we've just seen, our backup script might look like this:

day=`date +%d`
homedir=$(pwd)

#!/usr/bin/env bash

#
Author : Rocky Documentation Team
Date: March 2022
Version 1.0.0: Save in /root the files passwd, shadow, group, and gshadow
Version 1.0.1: Adding what we learned about variables
#

Global variables
FILE1=/etc/passwd
FILE2=/etc/shadow
FILE3=/etc/group
FILE4=/etc/gshadow

Destination folder
DESTINATION=/root

Readonly variables
readonly FILE1 FILE2 FILE3 FILE4 DESTINATION

A folder name with the day's number
dir="backup-$(date +%j)"

Clear the screen
clear

Launch the backup
echo "**"
echo " Backup Script - Backup on ${HOSTNAME} "
echo "**"
echo "The backup will be made in the folder ${dir}."
echo "Creating the directory..."
mkdir -p ${DESTINATION}/${dir}

echo "Starting the backup of ${FILE1}, ${FILE2}, ${FILE3}, ${FILE4} to $
{DESTINATION}/${dir}:"

cp ${FILE1} ${FILE2} ${FILE3} ${FILE4} ${DESTINATION}/${dir}

echo "Backup ended!"

4.4 Substitute commands

- 15/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Running our backup script:

will give us:

The backup is noted in the system event log:
logger "Backup of system files by ${USER} on ${HOSTNAME} in the folder $
{DESTINATION}/${dir}."

sudo ./backup.sh

**
Backup Script - Backup on desktop

**
The backup will be made in the folder backup-088.
Creating the directory...
Starting the backup of /etc/passwd, /etc/shadow, /etc/group, /etc/gshadow to /
root/backup-088:
Backup ended!

4.4 Substitute commands

- 16/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

5. Bash - Data entry and manipulations

In this chapter you will learn how to make your scripts interact with users and

manipulate the data.

Objectives: In this chapter you will learn how to:

 read input from a user;

 manipulate data entries;

 use arguments inside a script;

 manage positional variables;

linux, script, bash, variable

Knowledge:

Complexity:

Reading time: 10 minutes

Depending on the script's purpose, it might need information either at launch or

during execution. This info, not predetermined during script writing, can come

from files, user input, or be passed as arguments when entering the script

command, similar to many Linux commands.

5.1 The read command

The read command allows you to enter a character string and store it in a variable.

Syntax of the read command:

The first example below, prompts you for two variable inputs: "name" and

"firstname", but since there is no prompt, you would have to know ahead of time

that this was the case. In the case of this particular entry, each variable input

read [-n X] [-p] [-s] [variable]

5. Bash - Data entry and manipulations

- 17/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

would be separated by a space. The second example prompts for the variable

"name" with the prompt text included:

When using the -n option, the shell automatically validates the input after the

specified number of characters. The user does not have to press the Enter key.

The read command allows you to interrupt the execution of the script while the

user enters information. The user's input is broken down into words assigned to

one or more predefined variables. The words are strings of characters separated by

the field separator.

The end of the input is determined by pressing the Enter key.

Once the input is validated, each word will be stored in the predefined variable.

The division of the words is defined by the field separator character. This separator

is stored in the system variable IFS (Internal Field Separator).

By default, the IFS contains the space, tab and line feed.

When used without specifying a variable, this command simply pauses the script.

The script continues its execution when the input is validated.

This is used to pause a script when debugging or to prompt the user to press

Enter to continue.

read name firstname
read -p "Please type your name: " name

Option Functionality

-p Displays a prompt message.

-n Limits the number of characters to be entered.

-s Hides the input.

⏎

read -n5 name

⏎

set | grep IFS
IFS=$' \t\n'

⏎

5.1 The read command

- 18/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

5.2 The cut command

The cut command allows you to isolate a column in a file or in a stream.

Syntax of the cut command:

Example of use of the cut command:

The main benefit of this command will be its association with a stream, for example

the grep command and the | pipe.

The grep command works "vertically" (isolation of one line from all the lines in

the file).

The combination of the two commands allows for the isolation of a specific field

in the file.

Example:

Configuration files with a single structure using the same field separator are ideal targets for this combination of commands.

echo -n "Press [ENTER] to continue..."
read

cut [-cx] [-dy] [-fz] file

cut -d: -f1 /etc/passwd

Option Observation

-c Specifies the sequence numbers of the characters to be selected.

-d Specifies the field separator.

-f Specifies the order number of the columns to select.

•

•

grep "^root:" /etc/passwd | cut -d: -f3
0

Note

5.2 The cut command

- 19/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

5.3 The tr command

The tr command allows you to convert a string.

Syntax of the tr command:

An example of using the tr command follows. If you use grep to return root's

passwd file entry, you would get this:

returns:

Now let's use tr command and the reduce the "o's" in the line:

which returns this:

5.4 Extract the name and path of a file

The basename command allows you to extract the name of the file from a path.

The dirname command allows you to extract the parent path of a file.

Examples:

tr [-csd] string1 string2

Option Observation

-c All characters not specified in the first string are converted to the characters of the second string.

-d Deletes the specified character.

-s Reduce the specified character to a single unit.

grep root /etc/passwd

root:x:0:0:root:/root:/bin/bash

grep root /etc/passwd | tr -s "o"

rot:x:0:0:rot:/rot:/bin/bash

5.3 The tr command

- 20/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Which would result in "passwd"

Which would result in: "/usr/bin"

5.5 Arguments of a script

The request to enter information with the read command interrupts the execution

of the script as long as the user does not enter any information.

This method, although very user-friendly, has its limits if the script is scheduled to

run at night. To overcome this problem, it is possible to inject the desired

information via arguments.

Many Linux commands work on this principle.

This way of doing things has the advantage that once the script is executed, it will

not need any human intervention to finish.

Its major disadvantage is that the user will have to be warned about the syntax of

the script to avoid errors.

The arguments are filled in when the script command is entered. They are

separated by a space.

Once executed, the script saves the entered arguments in predefined variables:

positional variables .

echo $FILE=/usr/bin/passwd
basename $FILE

dirname $FILE

./script argument1 argument2

5.5 Arguments of a script

- 21/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

These variables can be used in the script like any other variable, except that they

cannot be assigned.

Unused positional variables exist but are empty.

Positional variables are always defined in the same way:

Example:

This will give:

•

•

Variable Observation

$0 contains the name of the script as entered.

$1 to $9 contain the values of the 1st to 9th argument

${x} contains the value of the argument x , greater than 9.

$# contains the number of arguments passed.

$* or $@ contains in one variable all the arguments passed.

#!/usr/bin/env bash
#
Author : Damien dit LeDub
Date : september 2019
Version 1.0.0 : Display the value of the positional arguments
From 1 to 3

The field separator will be "," or space
Important to see the difference in $* and $@
IFS=", "

Display a text on the screen:
echo "The number of arguments (\$#) = $#"
echo "The name of the script (\$0) = $0"
echo "The 1st argument (\$1) = $1"
echo "The 2nd argument (\$2) = $2"
echo "The 3rd argument (\$3) = $3"
echo "All separated by IFS (\$*) = $*"
echo "All without separation (\$@) = $@"

$./arguments.sh one two "tree four"
The number of arguments ($#) = 3
The name of the script ($0) = ./arguments.sh
The 1st argument ($1) = one
The 2nd argument ($2) = two
The 3rd argument ($3) = tree four

5.5 Arguments of a script

- 22/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Beware of the difference between $@ and $* . It is in the argument storage format:

$* : Contains the arguments in the format "$1 $2 $3 ..."

$@ : Contains arguments in the format "$1" "$2" "$3" ...

It is by modifying the IFS environment variable that the difference is visible.

5.5.1 The shift command

The shift command allows you to shift positional variables.

Let's modify our previous example to illustrate the impact of the shift command on

positional variables:

All separated by IFS ($*) = one,two,tree four
All without separation ($@) = one two tree four

Warning

•

•

#!/usr/bin/env bash
#
Author : Damien dit LeDub
Date : september 2019
Version 1.0.0 : Display the value of the positional arguments
From 1 to 3

The field separator will be "," or space
Important to see the difference in $* and $@
IFS=", "

Display a text on the screen:
echo "The number of arguments (\$#) = $#"
echo "The 1st argument (\$1) = $1"
echo "The 2nd argument (\$2) = $2"
echo "The 3rd argument (\$3) = $3"
echo "All separated by IFS (\$*) = $*"
echo "All without separation (\$@) = $@"

shift 2
echo ""
echo "-------- SHIFT 2 ----------------"
echo ""

echo "The number of arguments (\$#) = $#"
echo "The 1st argument (\$1) = $1"
echo "The 2nd argument (\$2) = $2"
echo "The 3rd argument (\$3) = $3"

5.5.1 The shift command

- 23/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

This will give:

As you can see, the shift command has shifted the place of the arguments "to the

left", removing the first 2.

When using the shift command, the $# and $* variables are modified accordingly.

5.5.2 The set command

The set command splits a string into positional variables.

Syntax of the set command:

Example:

echo "All separated by IFS (\$*) = $*"
echo "All without separation (\$@) = $@"

./arguments.sh one two "tree four"
The number of arguments ($#) = 3
The 1st argument ($1) = one
The 2nd argument ($2) = two
The 3rd argument ($3) = tree four
All separated by IFS ($*) = one,two,tree four
All without separation ($@) = one two tree four

-------- SHIFT 2 ----------------

The number of arguments ($#) = 1
The 1st argument ($1) = tree four
The 2nd argument ($2) =
The 3rd argument ($3) =
All separated by IFS ($*) = tree four
All without separation ($@) = tree four

Warning

set [value] [$variable]

$ set one two three
$ echo $1 $2 $3 $#
one two three 3
$ variable="four five six"

5.5.2 The set command

- 24/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can now use positional variables as seen before.

$ set $variable
$ echo $1 $2 $3 $#
four five six 3

5.5.2 The set command

- 25/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

6. Bash - Check your knowledge

 Among these 4 shells, which one does not exist:

 What is the correct syntax to assign a content to a variable:

 How to store the return of a command in a variable:

 The read command allows you to read the contents of a file:

Bash

Ksh

Tsh

Csh

variable:=value

variable := value

variable = value

variable=value

file=$(ls)

file= ls``

file:=$ls

file = $(ls)

file=${ls}

True

False

6. Bash - Check your knowledge

- 26/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

 Which of the following is the correct syntax for the command cut :

 Which command is used to shift positional variables:

 Which command transforms a string into positional variables:

cut -f: -D1 /etc/passwd

cut -d: -f1 /etc/passwd

cut -d1 -f: /etc/passwd

cut -c ":" -f 3 /etc/passwd

left

shift

set

array

left

shift

set

array

6. Bash - Check your knowledge

- 27/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

7. Bash - Tests

Objectives: In this chapter you will learn how to:

 work with the return code;

 test files and compare them;

 test variables, strings and integers;

 perform an operation with numeric integers;

linux, script, bash, variable

Knowledge:

Complexity:

Reading time: 10 minutes

Upon completion, all commands executed by the shell return a return code (also

called status or exit code).

If the command ran correctly, the convention is that the status code will be zero.

If the command encountered a problem during its execution, its status code will

have a non-zero value. There are many reasons for this: lack of access rights,

missing file, incorrect input, etc.

You should refer to the manual of the man command to know the different values of

the return code provided by the developers.

The return code is not visible directly, but is stored in a special variable: $? .

•

•

mkdir directory
echo $?
0

mkdir /directory
mkdir: unable to create directory

7. Bash - Tests

- 28/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

The display of the contents of the $? variable with the echo command is done immediately after the command you want to evaluate

because this variable is updated after each execution of a command, a command line or a script.

Since the value of $? changes after each command execution, it is better to put its value in a variable that will be used afterwards,

for a test or to display a message.

It is also possible to create return codes in a script. To do so, you just need to add a

numeric argument to the exit command.

In addition to the correct execution of a command, the shell offers the possibility to

run tests on many patterns:

Files: existence, type, rights, comparison;

Strings: length, comparison;

Numeric integers: value, comparison.

echo $?
1

command_that_does_not_exist
command_that_does_not_exist: command not found
echo $?
127

Note

Tip

ls no_file
ls: cannot access 'no_file': No such file or directory
result=$?
echo $?
0
echo $result
2

bash # to avoid being disconnected after the "exit 2
exit 123
echo $?
123

•

•

•

7. Bash - Tests

- 29/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

The result of the test:

$?=0 : the test was correctly executed and is true;

$?=1 : the test was correctly executed and is false;

$?=2 : the test was not correctly executed.

7.1 Testing the type of a file

Syntax of the test command for a file:

or:

Note that there is a space after the [and before the] .

•

•

•

test [-d|-e|-f|-L] file

[-d|-e|-f|-L file]

Note

7.1 Testing the type of a file

- 30/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Options of the test command on files:

Example:

An internal command to some shells (including bash) that is more modern, and

provides more features than the external command test , has been created.

We will therefore use the internal command for the rest of this chapter.

Option Observation

-e Tests if the file exists

-f Tests if the file exists and is of normal type

-d Checks if the file exists and is of type directory

-L Checks if the file exists and is of type symbolic link

-b Checks if the file exists and is of special type block mode

-c Checks if the file exists and is of special type character mode

-p Checks if the file exists and is of type named pipe (FIFO)

-S Checks if the file exists and is of type socket

-t Checks if the file exists and is of type terminal

-r Checks if the file exists and is readable

-w Checks if the file exists and is writable

-x Checks if the file exists and is executable

-g Checks if the file exists and has a set SGID

-u Checks if the file exists and has a set SUID

-s Tests if the file exists and is non-empty (size > 0 bytes)

test -e /etc/passwd
echo $?
0
[-w /etc/passwd]
echo $?
1

[[-s /etc/passwd]]
echo $?
1

Note

7.1 Testing the type of a file

- 31/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.2 Compare two files

It is also possible to compare two files:

7.3 Testing variables

It is possible to test variables:

7.4 Testing strings

It is also possible to compare two strings:

Example:

[[file1 -nt|-ot|-ef file2]]

Option Observation

-nt Tests if the first file is newer than the second

-ot Tests if the first file is older than the second

-ef Tests if the first file is a physical link of the second

[[-z|-n $variable]]

Option Observation

-z Tests if the variable is empty

-n Tests if the variable is not empty

[[string1 =|!=|<|> string2]]

[["$var" = "Rocky rocks!"]]
echo $?
0

Option Observation

= Tests if the first string is equal to the second

!= Tests if the first string is different from the second one

< Tests if the first string is before the second in ASCII order

> Tests if the first string is after the second in ASCII order

7.2 Compare two files

- 32/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.5 Comparison of integer numbers

Syntax for testing integers:

Example:

Since numeric values are treated by the shell as regular characters (or strings), a test on a character can return the same result

whether it is treated as a numeric or not.

But the result of the test will not have the same meaning:

In the first case, it will mean that the two characters have the same value in the ASCII table.

In the second case, it will mean that the two numbers are equal.

[["num1" -eq|-ne|-gt|-lt "num2"]]

var=1
[["$var" -eq "1"]]
echo $?
0

var=2
[["$var" -eq "1"]]
echo $?
1

Option Observation

-eq Test if the first number is equal to the second

-ne Test if the first number is different from the second

-gt Test if the first number is greater than the second

-lt Test if the first number is less than the second

Note

test "1" = "1"
echo $?
0
test "1" -eq "1"
echo $?
0

•

•

7.5 Comparison of integer numbers

- 33/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.6 Combined tests

The combination of tests allows you to perform several tests in one command. It is

possible to test the same argument (file, string or numeric) several times or

different arguments.

With the internal command, it is better to use this syntax:

Tests can be grouped with parentheses () to give them priority.

The ! character is used to perform the reverse test of the one requested by the

option:

7.7 Numerical operations

The expr command performs an operation with numeric integers.

[option1 argument1 [-a|-o] option2 argument 2]

ls -lad /etc
drwxr-xr-x 142 root root 12288 sept. 20 09:25 /etc
[-d /etc -a -x /etc]
echo $?
0

Option Observation

-a AND: The test will be true if all patterns are true.

-o OR: The test will be true if at least one pattern is true.

[[-d "/etc" && -x "/etc"]]

(TEST1 -a TEST2) -a TEST3

test -e /file # true if file exists
! test -e /file # true if file does not exist

expr num1 [+] [-] [*] [/] [%] num2

7.6 Combined tests

- 34/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Example:

Be careful to surround the operation sign with a space. You will get an error message if you forget. In the case of a multiplication, the

wildcard character * is preceded by \ to avoid a wrong interpretation.

7.8 The typeset command

The typeset -i command declares a variable as an integer.

Example:

7.9 The let command

The let command tests if a character is numeric.

Example:

expr 2 + 2
4

Warning

Option Observation

+ Addition

- Subtraction

* Multiplication

/ Division quotient

% Modulo of the division

typeset -i var1
var1=1+1
var2=1+1
echo $var1
2
echo $var2
1+1

var1="10"
var2="AA"
let $var1
echo $?

7.8 The typeset command

- 35/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

The let command does not return a consistent return code when it evaluates the numeric 0 .

The let command also allows you to perform mathematical operations:

let can be substituted by $(()) .

0
let $var2
echo $?
1

Warning

let 0
echo $?
1

let var=5+5
echo $var
10

echo $((5+2))
7
echo $((5*2))
10
var=$((5*3))
echo $var
15

7.9 The let command

- 36/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

8. Bash - Loops

Objectives: In this chapter you will learn how to:

 use loops;

linux, script, bash, loops

Knowledge:

Complexity:

Reading time: 20 minutes

The bash shell allows for the use of loops. These structures allow for the execution

of a block of commands several times (from 0 to infinity) according to a

statically defined value, dynamically or on condition:

while

until

for

select

Whatever the loop used, the commands to be repeated are placed between the

words do and done .

8.1 The while conditional loop structure

The while / do / done structure evaluates the command placed after while .

If this command is true ($? = 0), the commands placed between do and done are

executed. The script then returns to the beginning to evaluate the command again.

When the evaluated command is false ($? != 0), the shell resumes the execution of

the script at the first command after done.

•

•

•

•

8. Bash - Loops

- 37/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Syntax of the conditional loop structure while :

Example using the while conditional structure:

If the evaluated command does not vary, the loop will be infinite and the shell will

never execute the commands placed after the script. This can be intentional, but it

can also be an error. So you have to be very careful with the commands that

manage the loop and find a way to get out of it.

To get out of a while loop, you have to make sure that the command being

evaluated is no longer true, which is not always possible.

There are commands that allow you to change the behavior of a loop:

exit

break

continue

8.2 The exit command

The exit command ends the execution of the script.

Syntax of the exit command :

Example using the exit command :

while command
do

command if $? = 0
done

while [[-e /etc/passwd]]
do

echo "The file exists"
done

•

•

•

exit [n]

bash # to avoid being disconnected after the "exit 1
exit 1

8.2 The exit command

- 38/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

The exit command ends the script immediately. It is possible to specify the return

code of the script by giving it as an argument (from 0 to 255). If no argument is

given, the return code of the last command of the script will be passed to the $?

variable.

8.3 The break / continue commands

The break command allows you to interrupt the loop by going to the first command

after done .

The continue command allows you to restart the loop by going back to the first

command after done .

8.4 The true / false commands

The true command always returns true while the false command always returns

false .

Used as a condition of a loop, they allow for either an execution of an infinite loop

or the deactivation of this loop.

echo $?
1

while [[-d /]] INT ✘
17s
do

echo "Do you want to continue? (yes/no)"
read ans
[[$ans = "yes"]] && continue
[[$ans = "no"]] && break

done

true
echo $?
0
false
echo $?
1

8.3 The break / continue commands

- 39/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Example:

8.5 The until conditional loop structure

The until / do / done structure evaluates the command placed after until .

If this command is false ($? != 0), the commands placed between do and done are

executed. The script then returns to the beginning to evaluate the command again.

When the evaluated command is true ($? = 0), the shell resumes the execution of

the script at the first command after done .

Syntax of the conditional loop structure until :

Example of the use of the conditional structure until :

8.6 The alternative choice structure select

The structure select / do / done allows for the display of a menu with several

choices and an input request.

while true
do

echo "Do you want to continue? (yes/no)"
read ans
[[$ans = "yes"]] && continue
[[$ans = "no"]] && break

done

until command
do

command if $? != 0
done

until [[-e test_until]]
do

echo "The file does not exist"
touch test_until

done

8.5 The until conditional loop structure

- 40/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

Each item in the list has a numbered choice. When you enter a choice, the value

chosen is assigned to the variable placed after select (created for this purpose).

It then executes the commands placed between do and done with this value.

The variable PS3 contains the invitation to enter the choice;

The variable REPLY will return the number of the choice.

A break command is needed to exit the loop.

The select structure is very useful for small and simple menus. To customize a more complete display, the echo and read commands

must be used in a while loop.

Syntax of the conditional loop structure select :

Example of the use of the conditional structure select :

If this script is run, it shows something like this:

•

•

Note

PS3="Your choice:"
select variable in var1 var2 var3
do

commands
done

PS3="Your choice: "
select choice in coffee tea chocolate
do

echo "You have chosen the $REPLY: $choice"
done

1) Coffee
2) Tea
3) Chocolate
Your choice : 2
You have chosen choice 2: Tea
Your choice:

8.6 The alternative choice structure select

- 41/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

8.7 The loop structure on a list of values for

The for / do / done structure assigns the first element of the list to the variable

placed after for (created on this occasion). It then executes the commands placed

between do and done with this value. The script then returns to the beginning to

assign the next element of the list to the working variable. When the last element

has been used, the shell resumes execution at the first command after done .

Syntax of the loop structure on list of values for :

Example of using the conditional structure for :

Any command producing a list of values can be placed after the in using a sub-

execution.

With the variable IFS containing $' \t\n' , the for loop will take each word of

the result of this command as a list of elements to loop on.

With the IFS variable containing $'\t\n' (i.e. without spaces), the for loop will

take each line of the result of this command.

This can be the files in a directory. In this case, the variable will take as a value

each of the words of the file names present:

for variable in list
do

commands
done

for file in /home /etc/passwd /root/fic.txt
do

file $file
done

•

•

for file in $(ls -d /tmp/*)
do

echo $file
done

8.7 The loop structure on a list of values for

- 42/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

It can be a file. In this case, the variable will take as a value each word contained in

the file browsed, from the beginning to the end:

To read a file line by line, you must modify the value of the IFS environment

variable.

cat my_file.txt
first line
second line
third line
for LINE in $(cat my_file.txt); do echo $LINE; done
first
line
second
line
third line
line

IFS=$'\t\n'
for LINE in $(cat my_file.txt); do echo $LINE; done
first line
second line
third line

8.7 The loop structure on a list of values for

- 43/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

9. Bash - Check your knowledge

 Every order must return a return code at the end of its execution:

 A return code of 0 indicates an execution error:

 The return code is stored in the variable $@ :

 The test command allows you to:

 The command expr :

 Does the syntax of the conditional structure below seem correct to you? Explain

why.

True

False

True

False

True

False

Test the type of a file

Test a variable

Compare numbers

Compare the content of 2 files

Concatenates 2 strings of characters

Performs mathematical operations

Display text on the screen

if command
command if $?=0

else

9. Bash - Check your knowledge

- 44/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

 What does the following syntax mean: ${variable:=value}

 Does the syntax of the conditional alternative structure below seem correct to

you? Explain why.

 Which of the following is not a structure for looping?

command if $?!=0
fi

True

False

Displays a replacement value if the variable is empty

Display a replacement value if the variable is not empty

Assigns a new value to the variable if it is empty

case $variable in
value1)

commands if $variable = value1
value2)

commands if $variable = value2
*)

commands for all values of $variable != of value1 and value2
;;

esac

True

False

while

until

loop

for

9. Bash - Check your knowledge

- 45/46 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/

Learning Bash with Rocky (English version) Copyright © 2023 The Rocky Enterprise Software Foundation

	Learning Bash with Rocky (English version)
	Version : 2025/07/03

	1. Licence
	2. Learning Bash with Rocky
	2.1 Generalities

	3. Bash - First script
	3.1 My first script

	4. Bash - Using Variables
	4.1 Storing information for later use
	4.2 Delete and lock variables
	4.3 Use environment variables
	4.4 Substitute commands

	5. Bash - Data entry and manipulations
	5.1 The read command
	5.2 The cut command
	5.3 The tr command
	5.4 Extract the name and path of a file
	5.5 Arguments of a script
	5.5.1 The shift command
	5.5.2 The set command

	6. Bash - Check your knowledge
	7. Bash - Tests
	7.1 Testing the type of a file
	7.2 Compare two files
	7.3 Testing variables
	7.4 Testing strings
	7.5 Comparison of integer numbers
	7.6 Combined tests
	7.7 Numerical operations
	7.8 The typeset command
	7.9 The let command

	8. Bash - Loops
	8.1 The while conditional loop structure
	8.2 The exit command
	8.3 The break / continue commands
	8.4 The true / false commands
	8.5 The until conditional loop structure
	8.6 The alternative choice structure select
	8.7 The loop structure on a list of values for

	9. Bash - Check your knowledge

