
NvChad (English version)

A book from the Documentation Team

Version : 2024/03/20

Rocky Documentation Team

Copyright © 2023 The Rocky Enterprise Software Foundation

Table of contents

71. Licence

8
2. Introduction

9
2.1 Using Neovim as an IDE

102.1.1 Main Features

122.2 References

12
2.2.1 Lua

13
2.2.2 Neovim

14
2.2.3 LSP

14
2.2.4 tree-sitter

15
3. Additional Software Needed

15
3.1 RipGrep

16
3.2 RipGrep Verification

17
3.3 Lazygit

Table of contents

- 2/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

19
4. Install Neovim

19
4.1 Introduction to Neovim

19

4.1.1

Community of developers

19
4.1.2 Key Features

21
4.2 Neovim Installation

22
4.2.1 Uninstall

0
4.3 Neovim Basic

0
5. Turning Neovim into an advanced IDE

0
5.1 Pre-requisites

0
5.1.1 Preliminary Operations

Table of contents

- 3/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

0
5.2 Installation

05.2.1 Clone configuration

0
5.2.2 Bootstrap

0
5.3 Configuration Structure

05.3.1 Basic structure

05.3.2 Template Structure

05.4 Structure analysis

0
5.5 Main keyboard keys

06. Example configuration

0
6.1 Introduction

0
6.2 Installation

0
6.3 Structure

06.4 Structure Analysis

0
6.4.1 Main Files

0
6.4.2 Configs folder

0
6.5 Conclusion

0
7. Nerd Fonts - Fonts for Developers

0
7.1 Download

0
7.2 Installation

0
7.3 Configuration

08. vale in NvChad (Neovim)

0
8.1 Introduction

0
8.2 Prerequisites

0
8.2.1 Installation of nvim-lint

0
8.3 Installing vale using Mason

0
8.3.1 Configuring and initializing vale

0
8.3.2 The lint.lua file changes

08.4 Conclusions and final thoughts

Table of contents

- 4/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

09. Marksman - code assistant

09.1 Objectives

09.2 Requirements and skills

09.3 Installation of Marksman

09.4 Integration into the editor

09.5 Use of marksman

09.6 Main keys

09.7 Conclusion

010. Basic configuration plugins

010.1 Main Plugins

010.2 LSP functionality

010.3 Lua Code

010.4 Mixed Plugins

010.5 File Management

011. Plugins Manager

011.1 Main Features

011.2 Preliminary Operations

011.3 Inserting a Plugin

011.4 Removing a plugin

011.5 Updating Plugins

011.6 Additional Features

011.7 Synchronization

012. NvChad Interface

012.1 Tabufline

012.2 Middle Section - Open Buffers

012.3 Statusline

012.4 Integrated Help

012.5 NvimTree

013. Editing with NvChad

013.1 Open a file

013.2 Working with the Editor

013.2.1 Text Selection

013.2.2 Text search

013.3 Saving the Document

014. NvimTree - File Explorer

014.1 Working with the File Explorer

014.1.1 Select a File

014.1.2 Opening a File

Table of contents

- 5/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

014.1.3 File Management

014.2 Advanced Features

014.3 Conclusion

015. Markdown Preview

015.1 Introduction

015.1.1 Peek.nvim

015.1.2 Markdown-preview.nvim

015.2 Conclusions and final thoughts

016. Project Manager

016.1 Introduction

016.1.1 Plugin installation

016.1.2 Using the Project Manager

016.1.3 Additional functions

016.1.4 Mapping

016.2 Conclusions and final thoughts

Table of contents

- 6/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

1. Licence

RockyLinux offers Linux courseware for trainers or people wishing to learn how to

administer a Linux system on their own.

RockyLinux materials are published under Creative Commons-BY-SA. This means

you are free to share and transform the material, while respecting the author's

rights.

BY : Attribution. You must cite the name of the original author.

SA : Share Alike.

Creative Commons-BY-SA licence : https://creativecommons.org/licenses/by-sa/

4.0/

The documents and their sources are freely downloadable from:

https://docs.rockylinux.org

https://github.com/rocky-linux/documentation

Our media sources are hosted at github.com. You'll find the source code repository

where the version of this document was created.

From these sources, you can generate your own personalized training material

using mkdocs. You will find instructions for generating your document here.

How can I contribute to the documentation project?

You'll find all the information you need to join us on our git project home page.

We wish you all a pleasant reading and hope you enjoy the content.

•

•

•

1. Licence

- 7/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/
https://github.com/rocky-linux/documentation
https://www.mkdocs.org/
https://github.com/rocky-linux/documentation/tree/main/build_pdf
https://github.com/rocky-linux/documentation

2. Introduction

With the release of version 2.5, the editor's developers significantly changed the configuration's structure. The most significant

changes concern the following aspects:

The configuration transformation into a Neovim plugin can then be updated using the lazy.nvim plugins manager

Removing the custom folder for editor customization (now integrated into the main folder). A migration script is provided for current

users.

The mappings have been changed and no longer use nvchad's custom syntax, instead nvim's vim.keymap.set is used.

As a result, some pages of the guide, especially the whole part concerning the installation of NvChad and the subsequent installation

of plugins, appear incorrect. The guide is under revision and will be updated soon.

Throughout this book, you will find ways to implement Neovim, along with NvChad,

to create a fully functional Integrated Development Environment (IDE).

I say "ways" because there are many possibilities. The author focuses here on using

these tools for writing markdown, but if markdown isn't your focus, don't worry

simply read on. If you are unfamiliar with either of these tools (NvChad or Neovim),

then this book will give you an introduction to both, and if you step through these

documents, you'll soon realize that you can set up this environment to be a huge

help for whatever your programming or script writing needs are.

Want an IDE that will help in writing Ansible playbooks? You can get that! Want an

IDE for Golang? That's available too. Simply want a good interface for writing

BASH scripts? It's also available.

Through the use of Language Server Protocols and linters, you can setup an

environment that is customized just for you. The best part is that once you have the

environment setup, it can quickly be updated when new changes are available

through the use of lazy.nvim and Mason, both of which are covered here.

Because Neovim is a fork of Vim, the overall interface will be familiar to vim users.

If you aren't a vim user, you will pick up on the syntax of the commands quickly

using this book. There's a lot of information covered here but it's easy to follow

along, and once you've completed the content, you'll know enough to build your

own IDE for your needs with these tools.

Release 2.5 changes

•

•

•

2. Introduction

- 8/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://gist.github.com/siduck/048bed2e7570569e6b327b35d1715404
https://github.com/folke/lazy.nvim
https://github.com/williamboman/mason.nvim
https://www.vim.org/

It was the author's intent not to break this book down into chapters. The reason is

that this implies an order that must be followed and, for the most part, that's not

necessary. You will want to start with this page, read and follow the "Additional

Software", "Install Neovim" and "Install NvChad" sections, but from there, you can

choose how you want to proceed.

2.1 Using Neovim as an IDE

The basic installation of Neovim provides an excellent editor for development, but

it cannot yet be called an IDE; all the more advanced IDE features, even if already

preset, are not yet activated. To do this we need to pass the necessary

configurations to Neovim, and this is where NvChad comes to our aid. This allows

us to have a basic configuration out of the box with just one command!

The configuration is written in Lua, a very fast programming language that allows

NvChad to have startup and execution times for commands and keystrokes that are

very fast. This is also made possible by the Lazy loading technique used for plugins

that loads them only when required.

The interface turns out to be very clean and pleasant.

As the developers of NvChad are keen to point out, the project is only intended to

be a base on which to build your own personal IDE. Subsequent customization is

done through the use of plugins.

2.1 Using Neovim as an IDE

- 9/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

2.1.1 Main Features

Designed to be fast. From the choice of programming language to techniques

for loading components, everything is designed to minimize execution time.

Attractive Interface. Despite being a cli application the interface looks

modern and beautiful graphically, plus all the components fit the UI perfectly.

Extremely Configurable. Due to the modularity derived from the base

application (NeoVim), the editor can be adapted perfectly to one's needs.

However, remember that when we talk about customization, we are referring to

functionality, and not to the appearance of the interface.

Automatic update mechanism. The editor comes with a mechanism (through

the use of git) that allows updates with a simple :NvChadUpdate command.

•

•

•

•

2.1.1 Main Features

- 10/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

Powered by Lua. NvChad's configuration is written entirely in lua, which

allows it to integrate seamlessly into Neovim's configuration by taking advantage

of the full potential of the editor on which it is based.

Numerous inbuilt themes. The configuration already includes a large

number of themes to use, always keeping in mind that we are talking about a cli

application, themes can be selected with the <leader> + th key.

•

•

2.1.1 Main Features

- 11/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

2.2 References

2.2.1 Lua

What is Lua?

Lua is a robust, lightweight, scripting language that supports a variety of

programming methods. The name "Lua" comes from the Portuguese word meaning

"moon."

Lua was developed at the Catholic University of Rio de Janeiro by Roberto

Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. The development

was necessary for them because until 1992 Brazil was subject to strict import

regulations for hardware and software, so out of sheer necessity, these three

programmers developed their own scripting language called Lua.

Because Lua focuses primarily on scripts, it is rarely used as a stand-alone

programming language. Instead, it is most often used as a scripting language that

can be integrated (embedded) into other programs.

Lua is used in the development of video games and game engines (Roblox,

Warframe..), as a programming language in many network programs (Nmap,

ModSecurity..), and as a programming language in industrial programs. Lua is also

used as a library that developers can integrate into their programs to enable

scripting functionality by acting solely as an integral part of the host application.

How Lua works

There are two main components of Lua:

The Lua interpreter

The Lua virtual machine (VM)

Lua is not interpreted directly through a Lua file like other languages, for example

Python. Instead, it uses the Lua interpreter to compile a Lua file into bytecode. The

Lua interpreter is highly portable and capable of running on a multitude of devices.

•

•

2.2 References

- 12/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

Key Features

Speed: Lua is considered one of the fastest programming languages among

interpreted scripting languages; it can perform very performance-heavy tasks

faster than most other programming languages.

Size: Lua is tiny compared to other programming languages. This small size is

ideal for integrating Lua into multiple platforms, from embedded devices to game

engines.

Portability and integration: Lua's portability is almost unlimited. Any platform

that supports the standard C compiler can run Lua without problems. Lua does

not require complex rewrites to be compatible with other programming

languages.

Simplicity: Lua has a simple design but provides powerful functionality. One of

the main features of Lua is meta-mechanisms, which allow developers to

implement their own functionality. The syntax is simple and easily understood, so

that anyone can learn Lua and use it in their own programs.

License: Lua is free and open-source software distributed under the MIT license.

This allows anyone to use it for any purpose without paying any license or

royalties.

2.2.2 Neovim

Neovim is described in detail on its dedicated page so we will just dwell on the

main features, which are:

Performance: Very fast.

Customizable: Wide ecosystem of plugins and themes.

Syntax highlighting: Integration with Treesitter and LSP, (requires some

additional configurations).

Multiplatform: Linux, Windows and macOS

License: Mit: A short and simple permissive license with conditions requiring only

the preservation of copyright and license notices.

•

•

•

•

•

•

•

•

•

•

2.2.2 Neovim

- 13/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

2.2.3 LSP

What is the Language Server Protocol?

A language server is a standardized language library that uses its own procedure

(protocol) to provide support for functions such as autocomplete, goto definition, or

mouseover definitions.

The idea behind the Language Server Protocol (LSP) is to standardize the

communication protocol between tools and servers, so that a single language

server can be reused in multiple development tools. In this way, developers can

simply integrate these libraries into their editors and reference existing language

infrastructures, instead of customizing their code to include them.

2.2.4 tree-sitter

Tree-sitter basically consists of two components: a parser generator, and an

incremental parsing library. It can build a syntactic tree of the source file and

efficiently update it with each change.

A parser is a component that decomposes data into smaller elements to facilitate

its translation into another language, or as in our case, to be then passed to the

parsing library. Once the source file has been decomposed, the parsing library

parses the code and transforms it into a syntactic tree, allowing the structure of

the code to be manipulated more intelligently. This makes it possible to improve

(and speed up)

syntax highlighting

code navigation

refactoring

text objects and movements

Although it may seem that the two services (LSP and tree-sitter) are redundant, they are actually complementary in that LSP works

at the project level while tree-sitter works only on the open source file.

Now that we have explained a bit about the technologies used to create the IDE we

can move on to the Additional Software needed to configure our NvChad.

•

•

•

•

LSP and tree-sitter complementarity.

2.2.3 LSP

- 14/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://tree-sitter.github.io/tree-sitter/

3. Additional Software Needed

There are several pieces of additional software that, while not required, will aid in

the overall use of NvChad. The sections below will walk you through that software

and its uses.

3.1 RipGrep

ripgrep is a line-oriented search tool that recursively searches the current

directory for a regex (regular expression) pattern. By default, ripgrep respects the

rules of gitignore and automatically skips hidden files/directories and binaries.

3. Additional Software Needed

- 15/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

Ripgrep offers excellent support on Windows, macOS and Linux, with binaries

available for each release.

3.2 RipGrep Verification

At this point we can check that everything is okay with:

Install RipGrep from EPEL

In both Rocky Linux 8 and 9, you can install RipGrep from the EPEL. To do this,

install the epel-release , upgrade the system, and then install ripgrep :

Install RipGrep using cargo

Ripgrep is software written in Rust and is installable with the cargo utility. Note,

however, that cargo is not installed by the default installation of rust, so you have

to install it explicitly. If you run into errors using this method, revert back to

installing from the EPEL.

Once the necessary software is installed, we can install ripgrep with:

The installation will save the rg executable in the ~/.cargo/bin folder which is

outside the PATH, to use it at the user level we will link it to ~/.local/bin/ .

sudo dnf install -y epel-release
sudo dnf upgrade
sudo dnf install ripgrep

dnf install rust cargo

cargo install ripgrep

ln -s ~/.cargo/bin/rg ~/.local/bin/

rg --version
ripgrep 13.0.0
-SIMD -AVX (compiled)
+SIMD +AVX (runtime)

3.2 RipGrep Verification

- 16/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

RipGrep is needed for recursive searches with :Telescope .

3.3 Lazygit

LazyGit is an ncurses-style interface that allows you to perform all git operations

in a more user-friendly way. It is required by the lazygit.nvim plugin. This plugin

makes it possible to use LazyGit directly from NvChad, it opens a floating window

from where you can perform all operations on your repositories, thus allowing you

to make all changes to the git repository without leaving the editor.

To install it we can use the repository for Fedora. On Rocky Linux 9 it works

perfectly.

Once installed we open a terminal and type the command lazygit and an interface

similar to this will appear:

With the ? key, we can bring up the menu with all available commands.

sudo dnf copr enable atim/lazygit -y
sudo dnf install lazygit

3.3 Lazygit

- 17/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://github.com/jesseduffield/lazygit

Now that we have all the necessary supporting software on our system, we can

move on to installing the basic software. We will start with the editor on which the

whole configuration is based, Neovim.

3.3 Lazygit

- 18/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

4. Install Neovim

4.1 Introduction to Neovim

Neovim is one of the best code editors due to its speed, ease of customization, and

configuration.

Neovim is a fork of the Vim editor. It was born in 2014, mainly due to the lack at

the time of asynchronous job support in Vim. Written in the Lua language with the

goal of modularizing the code to make it more manageable, Neovim was designed

with the modern user in mind. As the official website states

Neovim is built for users who want the best parts of Vim, and more.

The developers of Neovim chose Lua as it was perfect for embedding, using LuaJIT

quickly, and with a simple, script-oriented syntax.

From version 0.5 Neovim includes Treesitter (a parser generator tool) and supports

Language Server Protocol (LSP). This reduces the number of plugins needed to

achieve advanced editing functions. It improves the performance of operations

such as code completion and linting.

One of its strengths is its customization. All its configurations are contained in a

single file that can be distributed to various installations through version control

systems (Git or other) so that they are always synchronized.

4.1.1 Community of developers

Although Vim and Neovim are both open-source projects and hosted on GitHub,

there is a significant difference between the modes of development. Neovim has a

more open community development, while Vim's development is more tied to the

choices of its creator. Neovim's user and developer base is quite small compared to

Vim, but it is a continuously growing project.

4.1.2 Key Features

Performance: Very fast.•

4. Install Neovim

- 19/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

Customizable: Wide ecosystem of plugins and themes

Syntax highlighting: Integrated with Treesitter and LSP, but requires some

configuration

As with Vim, Neovim requires a basic knowledge of its commands and options. You

can get an overview of its features through the :Tutor command that invokes a file

where you can read, and practice using it. Learning takes longer than a fully

graphical IDE, but once you learn the shortcuts to the commands and the included

features, you will proceed very smoothly in editing documents.

•

•

4.1.2 Key Features

- 20/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

4.2 Neovim Installation

Neovim is also installable from the EPEL repository. The available version is always too old to meet the minimum requirements of the

NvChad installation.

Installation by this method is strongly discouraged and is not supported in this guide.

Installation from EPEL

4.2 Neovim Installation

- 21/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

Installation from pre-compiled package

Use of the pre-compiled package allows installation of both the development and

stable versions, which meet the requirements, and can be used as the basis for

configuring NvChad.

To use the full functionality of the editor, it is necessary to satisfy the dependencies

required by Neovim by manually providing the pre-compiled package

dependencies. The required packages can be installed with:

After installing the required dependencies, it is time to acquire the chosen

package.

By accessing the release page it will be possible to download the development

version (pre-release) or the stable version (stable). In both cases the compressed

archive to download for our architecture is linux64.

The required file is nvim-linux64.tar.gz, we should also download the file nvim-

linux64.tar.gz.sha256sum to verify its integrity.

Assuming that both were downloaded to the same folder, we will use the following

command for verification:

Now unpack the precompiled package to a location within your home folder, in this

guide the location .local/share/ was chosen but can be changed according to your

needs. Run the command:

All that remains at this point is to create a symbolic link in ~/.local/bin/ for the

nvim executable of the precompiled package.

To verify the correct installation run in a terminal the command nvim -v , which

should now show something like:

Installation from Source

Installing from precompiled package provides nvim only for the user who runs it. If

you want to make Neovim available to all users of the system, you will have to do

an installation from source. Compiling Neovim is not particularly difficult and

consists of the following steps.

We first install the packages required for compilation:

Once we have installed the necessary packages, we need to create a folder to build

neovim from and change into it:

The Neovim clone, by default, is synchronized with the Neovim development

branch (at the time of this writing, version 0.10.0). To compile the stable version,

we will have to switch to the corresponding branch before cloning with:

Now clone the repository:

Once the operation is finished, we will have a folder named neovim containing all

the necessary files. The next step is to check out the stable branch, and then

configure and compile the sources with the make command.

We chose the RelWithDebInfo type because it provides optimizations, and a useful

debugging layer for later customizations. You could also use the Release type if you

prefer maximum performance.

The process takes care of configuring and compiling the files that are to be put into

our system. These files are saved in neovim/build . To install them, we will use the

make install command:

Because this command will modify the filesystem, it must run as the superuser,

either with sudo or directly by the root user.

Once the installation is finished, we can verify that everything went well by

checking the path to Neovim:

And verifying the version:

As you can see from the command excerpt above, an installation of the stable

version was performed here. Both versions, stable and development, work perfectly

with NvChad on Rocky Linux 9.

4.2.1 Uninstall

If we need to remove the installation, for example, to switch to another version, we

will have to take ourselves back to the build folder and use the target cmake

provided by Neovim. To perform the uninstallation, you need to execute the

following command:

This command also requires superuser privileges or to be run as a root user.

Alternatively, you can use the manual method by removing the executable and

libraries with:

Again, you need to execute these commands with superuser permissions.

dnf install compat-lua-libs libtermkey libtree-sitter libvterm luajit
luajit2.1-luv msgpack unibilium xsel

sha256sum -c nvim-linux64.tar.gz.sha256sum
nvim-linux64.tar.gz: OK

tar xvzf nvim-linux64.tar.gz -C ~/.local/share/

cd ~/.local/bin/
ln -sf ~/.local/share/nvim-linux64/bin/nvim nvim

nvim -v
NVIM v0.9.5
Build type: RelWithDebInfo
LuaJIT 2.1.1692716794

dnf install ninja-build libtool autoconf automake cmake gcc gcc-c++ make
pkgconfig unzip patch gettext curl git

mkdir ~/lab/build
cd ~/lab/build

git clone https://github.com/neovim/neovim

cd ~/lab/build/neovim/
git checkout stable
make CMAKE_BUILD_TYPE=RelWithDebInfo

make install

whereis nvim
nvim: /usr/local/bin/nvim

nvim --version
NVIM v0.9.5
Build type: Release
LuaJIT 2.1.1692716794
....

cmake --build build/ --target uninstall

rm /usr/local/bin/nvim
rm -r /usr/local/share/nvim/

4.2.1 Uninstall

- 22/22 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://github.com/neovim/neovim/releases

	NvChad (English version)
	Version : 2024/03/20

	1. Licence
	2. Introduction
	2.1 Using Neovim as an IDE
	2.1.1 Main Features

	2.2 References
	2.2.1 Lua
	What is Lua?
	How Lua works
	Key Features

	2.2.2 Neovim
	2.2.3 LSP
	2.2.4 tree-sitter

	3. Additional Software Needed
	3.1 RipGrep
	3.2 RipGrep Verification
	3.3 Lazygit

	4. Install Neovim
	4.1 Introduction to Neovim
	4.1.1 Community of developers
	4.1.2 Key Features

	4.2 Neovim Installation
	4.2.1 Uninstall

