
Rocky Linux Web Services

Guide (English version)

A book from the Documentation Team

Version : 2025/07/12

Rocky Documentation Team

Copyright © 2023 The Rocky Enterprise Software Foundation

Table of contents

51. Foreword

51.1 Public

51.2 How to use this book

62. Licence

73. Part 1. Files Servers

84. Part 2. Web Servers Introduction

84.1 Introduction

84.1.1 HTTP protocol

104.1.2 URLs

104.1.3 Ports

114.2 Apache and Nginx

125. Part 2.1 Web Servers Apache

125.1 Apache

125.1.1 Generalities

135.1.2 Installation

165.1.3 Configuration

275.1.4 Security

306. Part 2.2 Web Servers Nginx

306.1 Nginx web server

306.1.1 Generalities

316.1.2 Installation

326.1.3 Configuration

346.1.4 https configuration

356.1.5 Log management

366.1.6 Nginx as a reverse proxy

377. Part 3. Application servers

377.1 PHP and PHP-FPM

377.1.1 Generalities

387.1.2 Choose a PHP version

407.1.3 Installation of the PHP CGI mode

427.1.4 Apache Integration

437.1.5 Installation of the PHP cgi mode (PHP-FPM)

477.1.6 NGinx integration

487.1.7 Apache integration

487.1.8 Solid configuration of PHP pools

Table of contents

- 2/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

497.1.9 Opcache configuration

518. Part 4.1 Database servers MariaDB

518.1 MariaDB and MySQL

518.1.1 Generalities

538.1.2 Installation

548.1.3 Configuration

558.1.4 Security

568.1.5 Administration

588.1.6 About logs

598.1.7 About backup

608.1.8 Graphical tools

608.1.9 Workshop

728.1.10 Check your Knowledge

728.1.11 Conclusion

739. Part 4.2 Database Servers MySQL

739.1 MySQL

739.1.1 Installation of MySQL

769.1.2 Check your Knowledge of MySQL

7710. Part 4.3 MariaDB database replication

7710.1 Secondary server with MariaDB

7710.1.1 Generalities secondary server with MariaDB

7810.1.2 Configuration of secondary server with MariaDB

8110.1.3 Workshop secondary server using MariaDB

8510.1.4 Check your Knowledge of the secondary server with MariaDB

8510.1.5 Conclusion about the secondary server with MariaDB

8611. Part 5. Load balancing, caching and proxyfication

8712. Part 5.1 HAProxy

8813. Part 5.2 Varnish

8813.1 Varnish

8813.1.1 Generalities

9213.1.2 Configuration

9413.1.3 VCL language

9813.1.4 Verification/Testing/Troubleshooting

9813.1.5 Backends

10213.1.6 Apache logs

10313.1.7 Cache purge

10413.1.8 Log management

10413.1.9 Workshop

Table of contents

- 3/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

10713.1.10 Conclusion

10813.1.11 Check your Knowledge

10914. Part 5.3 Squid

10914.1 Squid

10914.1.1 Generalities

11314.1.2 Installation

11514.1.3 Configuration

11714.1.4 Advanced configuration

11914.1.5 Tools

12014.1.6 Security

12114.1.7 Workshop

12314.1.8 Conclusion

12314.1.9 Check your Knowledge

12415. Part 6. Mail servers

12516. Part 7. High availability

12516.1 Clustering under Linux

12516.1.1 Overview

12716.2 Pacemaker (PCS)

12716.2.1 Generalities

13016.2.2 Installation

13216.2.3 Cluster management

14016.2.4 Cluster troubleshooting

14216.2.5 Workshop

14516.2.6 Check your knowledge

Table of contents

- 4/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

1. Foreword

Rocky Linux is part of the Enterprise Linux family, making it particularly well

suited to hosting web services such as file servers (FTP, sFTP), web servers

(apache, nginx), application servers (PHP, Python), database servers (MariaDB,

MySQL, PostgreSQL) or more specific services such as load balancing, caching,

proxy or reverse proxy (HAProxy, Varnish, Squid).

The web would not exist without email. Web services generally make extensive use

of mail servers (Postfix).

Sometimes, these services are extremely busy or require highly available services.

Other services can be implemented in these cases to guarantee optimal service

performance (Heartbeat, PCS).

Each chapter of this book can be consulted independently, according to your needs,

and reading the chapters in order is not compulsory.

This book is also part of a series of books dedicated to system administration under

Linux (Admin Guide, Learning Bash, Learning Ansible). Where necessary, you will

be invited to review the concepts you may be missing in the corresponding

chapters of the books mentioned above.

1.1 Public

The target audience for this book is system administrators already trained in the

use of system administration commands (see our book Admin Guide) who want to

install, configure, and secure their web services.

1.2 How to use this book

This book has been designed as a training manual, and you can use it in several

ways. It can be used as a training aid for trainers or as a self-training aid for

administrators wishing to acquire new skills or reinforce their existing knowledge.

To implement some of the services presented in this book, you may need two (or

more) servers to put the theory into practice.

1. Foreword

- 5/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

2. Licence

RockyLinux offers Linux courseware for trainers or people wishing to learn how to

administer a Linux system on their own.

RockyLinux materials are published under Creative Commons-BY-SA. This means

you are free to share and transform the material, while respecting the author's

rights.

BY : Attribution. You must cite the name of the original author.

SA : Share Alike.

Creative Commons-BY-SA licence : https://creativecommons.org/licenses/by-sa/

4.0/

The documents and their sources are freely downloadable from:

https://docs.rockylinux.org

https://github.com/rocky-linux/documentation

Our media sources are hosted at github.com. You'll find the source code repository

where the version of this document was created.

From these sources, you can generate your own personalized training material

using mkdocs. You will find instructions for generating your document here.

How can I contribute to the documentation project?

You'll find all the information you need to join us on our git project home page.

We wish you all a pleasant reading and hope you enjoy the content.

•

•

•

2. Licence

- 6/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/
https://github.com/rocky-linux/documentation
https://www.mkdocs.org/
https://github.com/rocky-linux/documentation/tree/main/build_pdf
https://github.com/rocky-linux/documentation

3. Part 1. Files Servers

The content for this page has yet to be written.

Info

3. Part 1. Files Servers

- 7/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

4. Part 2. Web Servers Introduction

4.1 Introduction

4.1.1 HTTP protocol

HTTP (HyperText Transfer Protocol) has been the most widely used protocol on

the Internet since 1990.

This protocol enables the transfer of files (mainly in HTML format but also in CSS,

JS, AVI, etc.) localized by a character string called URL between a browser (the

client) and a Web server (called httpd on UNIX machines).

HTTP is a "request-response" protocol operating on top of TCP (Transmission

Control Protocol).

The client opens a TCP connection to the server and sends a request.

The server analyzes the request and responds according to its configuration.

The HTTP protocol is "STATELESS": it does not retain any information about the

client's state from one request to the next. Dynamic languages such as PHP,

Python, or Java store client session information in memory (as on an e-commerce

site).

The current HTTP protocols are version 1.1, which is widely used, and versions 2

and 3, which are gaining adoption.

1.

2.

4. Part 2. Web Servers Introduction

- 8/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

An HTTP response is a set of lines sent to the browser by the server. It includes:

A status line: specifies the protocol version and the request's processing status

using a code and explanatory text. The line comprises three elements separated

by a space:

The protocol version used

The status code

The meaning of the code

Response header fields: these optional lines provide additional information

about the response and/or the server. Each line consists of a name qualifying the

header type, followed by a colon (:) and the header value.

The response body: contains the requested document.

Here is an example of an HTTP response:

Learning how to use the curl command will be very helpful for troubleshooting your servers in the future.

The role of the web server is to translate a URL into a local resource. Consulting

the https://docs.rockylinux.org/ page is like sending an HTTP request to this

machine. The DNS service plays an essential role.

•

•

•

•

•

•

$ curl --head --location https://docs.rockylinux.org
HTTP/2 200
accept-ranges: bytes
access-control-allow-origin: *
age: 109725
cache-control: public, max-age=0, must-revalidate
content-disposition: inline
content-type: text/html; charset=utf-8
date: Fri, 21 Jun 2024 12:05:24 GMT
etag: "cba6b533f892339d3818dc59c3a5a69a"
server: Vercel
strict-transport-security: max-age=63072000
x-vercel-cache: HIT
x-vercel-id: cdg1::pdqbh-1718971524213-4892bf82d7b2
content-length: 154696

Note

4.1.1 HTTP protocol

- 9/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/

4.1.2 URLs

A URL (Uniform Resource Locator) is an ASCII character string used to designate

resources on the Internet. It is informally referred to as a web address.

A URL has three parts:

Protocol name: This is the language used to communicate over the network,

such as HTTP, HTTPS, FTP, etc. The most widely used protocols are HTTP

(HyperText Transfer Protocol) and its secure version, HTTPS, which is used to

exchange Web pages in HTML format.

Login and password: This option allows you to specify access parameters to a

secure server. It is not recommended, as the password is visible in the URL (for

security purposes).

Host: This is the computer's name hosting the requested resource. Note that the

server's IP address can also be used, but it makes the URL less readable.

Port number: This is associated with a service that enables the server to know

the requested resource type. The HTTP protocol's default port is port 80 and 443

with HTTPS. So, the port number is optional when the protocol is HTTP or

HTTPS.

Resource path: This part lets the server know the location of the resource.

Generally, it is the location (directory) and name of the requested file. If nothing

in the address specifies a location, it indicates the host's first page. Otherwise, it

indicates the path to the page to display.

4.1.3 Ports

An HTTP request will arrive on port 80 (the default port for HTTP) of the server

running on the host. However, the administrator is free to choose the server's

listening port.

The HTTP protocol is available in a secure version: the HTTP protocol (port 443).

Implement this encrypted protocol with the mod_ssl module.

<protocol>://<host>:<port>/<path>

•

•

•

•

•

4.1.2 URLs

- 10/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Using other ports is also possible, such as port 8080 (Java EE application servers).

4.2 Apache and Nginx

The two most common web servers for Linux are Apache and Nginx. We will

discuss this in the following chapters.

4.2 Apache and Nginx

- 11/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

5. Part 2.1 Web Servers Apache

5.1 Apache

In this chapter, you will learn about the web server Apache.

Objectives: You will learn how to:

 install and configure Apache

apache, http, httpd

Knowledge:

Complexity:

Reading time: 30 minutes

5.1.1 Generalities

The Apache HTTP server is the work of a group of volunteers: The Apache Group.

This group set out to build a Web server on the same level as commercial products

but as free software (its source code is available).

Hundreds of users joined the original team and contributed ideas, tests, and lines

of code to making Apache the most widely used Web server in the world.

Apache's ancestor is the accessible server developed by the National Center for

Supercomputing Applications at the University of Illinois. The evolution of this

server came to a halt when the person in charge left the NCSA in 1994. Users

continued to fix bugs and create extensions, which they distributed as "patches",

hence the name "a patchee server".

The release of Apache version 1.0 was on December 1, 1995 (over 30 years ago!).

The development team coordinates its work through a mailing list, where

discussions regarding proposals and changes to the software occur. Changes are

5. Part 2.1 Web Servers Apache

- 12/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

voted on before incorporation into the project. Anyone can join the development

team. To become a member of The Apache Group, you must actively contribute to

the project.

The Apache server has a robust Internet presence, accounting for around 50% of

the market share for all active sites.

Apache often loses market share to its biggest challenger, the Nginx server. The

latter is faster at delivering web pages but less functionally complete than the giant

Apache.

5.1.2 Installation

Apache is cross-platform. It is usable on Linux, Windows, Mac...

The administrator will have to choose between two installation methods:

Package installation: the distribution vendor supplies stable, supported (but

sometimes older) versions

Installation from source: This involves the administrator compiling the

software, who can specify the options that interest him or her, thus optimizing the

service. Since Apache has a modular architecture, it is generally unnecessary to

re-compile the Apache software to add or remove additional functionalities (add

or remove modules).

The package-based installation method is strongly recommended. Additional

repositories are available to install more recent versions of Apache on older

distributions, but nobody will provide support in case of problems.

On Enterprise Linux distributions, the httpd package provides the Apache server.

•

•

5.1.2 Installation

- 13/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

In the future, you might have to install some extra modules. Here are some

examples of modules and their roles:

mod_access: filters client access by hostname, IP address, or other characteristic

mod_alias: enables the creation of aliases or virtual directories

mod_auth: authenticates clients

mod_cgi: executes CGI scripts

mod_info: provides information on server status

mod_mime: associates file types with the corresponding action

mod_proxy: proposes a proxy server

mod_rewrite: rewrites URLs

Others

The version installed on Rocky Linux 9 is 2.4.

Installing the package creates an apache system user and a corresponding apache

system group.

Enable and start the service:

You can check the service's status:

•

•

•

•

•

•

•

•

•

sudo dnf install httpd

$ grep apache /etc/passwd
apache:x:48:48:Apache:/usr/share/httpd:/sbin/nologin
$ grep apache /etc/group
apache:x:48:

$ sudo systemctl enable httpd --now
Created symlink /etc/systemd/system/multi-user.target.wants/httpd.service → /
usr/lib/systemd/system/httpd.service.

$ sudo systemctl status httpd
● httpd.service - The Apache HTTP Server

Loaded: loaded (/usr/lib/systemd/system/httpd.service; enabled; preset:
disabl> Active: active (running) since Fri 2024-06-21 14:22:34 CEST; 8s ago

5.1.2 Installation

- 14/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Do not forget to open your firewall (see Security section).

You can now check the availability of the service:

From any web browser providing the IP address of your server (for example,

http://192.168.1.100/).

Directly from your server.

To do so, you must install a text browser, such as elinks.

Browse your server and check the default page:

Installing the httpd package generates a complete tree structure that needs to be

fully understood:

Docs: man:httpd.service(8)
Main PID: 4387 (httpd)

Status: "Started, listening on: port 80"
Tasks: 177 (limit: 11110)

Memory: 24.0M
CPU: 68ms

CGroup: /system.slice/httpd.service
├─4387 /usr/sbin/httpd -DFOREGROUND
├─4389 /usr/sbin/httpd -DFOREGROUND
├─4390 /usr/sbin/httpd -DFOREGROUND
├─4391 /usr/sbin/httpd -DFOREGROUND

•

•

sudo dnf install elinks

elinks http://localhost

/etc/httpd/
├── conf
│ ├── httpd.conf
│ └── magic
├── conf.d
│ ├── README
│ ├── autoindex.conf
│ ├── userdir.conf
│ └── welcome.conf
├── conf.modules.d
│ ├── 00-base.conf
│ ├── 00-brotli.conf

5.1.2 Installation

- 15/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

http://192.168.1.100/

You will notice that the /etc/httpd/logs folder is a symbolic link to the /var/log/

httpd directory. Similarly, you will notice that the files making up the default site

are in the /var/www/html folder.

5.1.3 Configuration

Initially, the Apache server's configuration was in a single /etc/httpd/conf/

httpd.conf file. Over time, this file has become increasingly prominent and less

readable.

Modern distributions, therefore, tend to distribute Apache configuration over a

series of *.conf files in the directories /etc/httpd/conf.d and /etc/httpd/

conf.modules.d , attached to the main /etc/httpd/conf/httpd.conf file by the Include

directive.

The /etc/httpd/conf/httpd.conf file is amply documented. In general, these

comments are sufficient to clarify the administrator's options.

│ ├── 00-dav.conf
│ ├── 00-lua.conf
│ ├── 00-mpm.conf
│ ├── 00-optional.conf
│ ├── 00-proxy.conf
│ ├── 00-systemd.conf
│ ├── 01-cgi.conf
│ ├── 10-h2.conf
│ ├── 10-proxy_h2.conf
│ └── README
├── logs -> ../../var/log/httpd
├── modules -> ../../usr/lib64/httpd/modules
├── run -> /run/httpd
└── state -> ../../var/lib/httpd
/var/log/httpd/
├── access_log
└── error_log
/var/www/
├── cgi-bin
└── html

$ sudo grep "^Include" /etc/httpd/conf/httpd.conf
Include conf.modules.d/*.conf
IncludeOptional conf.d/*.conf

5.1.3 Configuration

- 16/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Global server configuration is in /etc/httpd/conf/httpd.conf .

This file has three sections for configuring:

in section 1, the global environment;

in section 2, the default site and default virtual site parameters;

in section 3, the virtual hosts.

Virtual hosting lets you put several virtual sites online on the same server. The

sites are then differentiated according to their domain names, IP addresses, etc.

Modifying a value in section 1 or 2 affects all hosted sites.

In a shared environment, modifications are, therefore, in section 3.

To facilitate future updates, creating a section 3 configuration file for each virtual

site is strongly recommended.

Here is a minimal version of the httpd.conf file:

•

•

•

ServerRoot "/etc/httpd"
Listen 80
Include conf.modules.d/*.conf
User apache
Group apache
ServerAdmin root@localhost
<Directory />
 AllowOverride none
 Require all denied
</Directory>
DocumentRoot "/var/www/html"
<Directory "/var/www">
 AllowOverride None
 Require all granted
</Directory>
<Directory "/var/www/html">
 Options Indexes FollowSymLinks
 AllowOverride None
 Require all granted
</Directory>
<IfModule dir_module>
 DirectoryIndex index.html
</IfModule>
<Files ".ht*">

5.1.3 Configuration

- 17/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

 Require all denied
</Files>
ErrorLog "logs/error_log"
LogLevel warn
<IfModule log_config_module>
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
 LogFormat "%h %l %u %t \"%r\" %>s %b" common
 <IfModule logio_module>
 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"
%I %O" combinedio
 </IfModule>
 CustomLog "logs/access_log" combined
</IfModule>
<IfModule alias_module>
 ScriptAlias /cgi-bin/ "/var/www/cgi-bin/"
</IfModule>
<Directory "/var/www/cgi-bin">
 AllowOverride None
 Options None
 Require all granted
</Directory>
<IfModule mime_module>
 TypesConfig /etc/mime.types
 AddType application/x-compress .Z
 AddType application/x-gzip .gz .tgz
 AddType text/html .shtml
 AddOutputFilter INCLUDES .shtml
</IfModule>
AddDefaultCharset UTF-8
<IfModule mime_magic_module>
 MIMEMagicFile conf/magic
</IfModule>
EnableSendfile on
IncludeOptional conf.d/*.conf

5.1.3 Configuration

- 18/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Section 1

The various directives encountered in Section 1 are :

MULTI-PROCESS MODULES (MPM)

The Apache server was designed to be powerful and flexible, capable of running on

various platforms.

Different platforms and environments often mean different functionality or the use

of other methods to implement the same functionality as efficiently as possible.

Apache's modular design allows the administrator to choose which features to

include in the server by selecting which modules to load, either at compile or run-

time.

This modularity also includes the most rudimentary web server functions.

The Multi-Process Modules (MPM) modules are responsible for associating with the

machine's network ports, accepting requests, and distributing them among the

various child processes.

Option Information

ServerTokens This directive will be in a future chapter.

ServertRoot Indicates the path to the directory containing all the files making up the Apache server.

Timeout The number of seconds before the expiration time of a request that is too long (incoming or

outgoing).

KeepAlive Persistent connection (several requests per TCP connection).

MaxKeepAliveRequests Maximum number of persistent connections.

KeepAliveTimeout Number of seconds to wait for the next client request before closing the TCP connection.

Listen Allows Apache to listen to specific addresses or ports.

LoadModule Loads add-on modules (fewer modules = greater security).

Include Includes other server configuration files.

ExtendedStatus Displays more information about the server in the server status module.

User and Group Allows the launching of Apache processes with different users. Apache always starts as root, then

changes its owner and group.

5.1.3 Configuration

- 19/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Configuring MPM modules is in the /etc/httpd/conf.modules.d/00-mpm.conf

configuration file:

As you can see, the default MPM is the mpm_event .

The performance and capabilities of your web server depend heavily on the choice

of MPM.

Choosing one module over another is a complex task, as is optimizing the chosen

MPM module (number of clients, queries, etc.).

The Apache configuration assumes a moderately busy service (256 clients max) by

default.

ABOUT KEEPALIVE DIRECTIVES

With the KeepAlive directive disabled, every resource request on the server

requires opening a TCP connection, which is time-consuming from a network point

of view and requires a lot of system resources.

Select the MPM module which should be used by uncommenting exactly
one of the following LoadModule lines. See the httpd.conf(5) man
page for more information on changing the MPM.

prefork MPM: Implements a non-threaded, pre-forking web server
See: http://httpd.apache.org/docs/2.4/mod/prefork.html
#
NOTE: If enabling prefork, the httpd_graceful_shutdown SELinux
boolean should be enabled, to allow graceful stop/shutdown.
#
#LoadModule mpm_prefork_module modules/mod_mpm_prefork.so

worker MPM: Multi-Processing Module implementing a hybrid
multi-threaded multi-process web server
See: http://httpd.apache.org/docs/2.4/mod/worker.html
#
#LoadModule mpm_worker_module modules/mod_mpm_worker.so

event MPM: A variant of the worker MPM with the goal of consuming
threads only for connections with active processing
See: http://httpd.apache.org/docs/2.4/mod/event.html
#
LoadModule mpm_event_module modules/mod_mpm_event.so

5.1.3 Configuration

- 20/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

With the KeepAlive directive set to On , the server keeps the connection open with

the client for the duration of the KeepAlive .

This strategy is a quick winner because a web page contains several files (images,

stylesheets, Javascript, etc.).

However, it is important to set this value as precisely as possible:

Too short a value penalizes the customer,

Too long a value penalizes server resources.

KeepAlive values for individual customer virtual hosts allow more granularity per

customer. In this case, setting KeepAlive values happens directly in the customer's

VirtualHost or at the proxy level (ProxyKeepalive and ProxyKeepaliveTimeout).

Section 2

Section 2 sets the values used by the main server. The main server responds to all

requests not handled by one of the Virtualhosts in section 3.

The values are also used as default values for virtual sites.

•

•

Option Information

ServerAdmin specifies an e-mail address appearing on certain auto-generated pages, such as error pages.

ServerName specifies the name identifying the server. It can happen automatically, but the recommendation is to

specify it explicitly (IP address or DNS name).

DocumentRoot specifies the directory containing files to serve to clients. Default /var/www/html/.

ErrorLog specifies the path to the error file.

LogLevel debug, info, notice, warn, error, crit, alert, emerg.

LogFormat defines a specific log format. Done with the CustomLog directive.

CustomLog specifies the path to access the file.

ServerSignature seen in the security part.

Alias specifies a directory outside the tree and makes it accessible by context. The presence or absence of

the last slash in the context is important.

Directory specifies behaviors and access rights by directory.

AddDefaultCharset specifies the encoding format for pages sent (accented characters can be replaced by ?...).

ErrorDocument customizes error pages.

server-status report on server status.

server-info report on server configuration.

5.1.3 Configuration

- 21/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

THE ErrorLog DIRECTIVE

The ErrorLog directive defines the error log to use.

This directive defines the file name in which the server logs all errors it

encounters. If the file path is not absolute, the assumption is to be relative to

ServerRoot.

THE DirectoryIndex DIRECTIVE

The DirectoryIndex directive defines the site's home page.

This directive specifies the file's name loaded first, which will act as the site index

or home page.

Syntax:

The full path is not specified. Searching for the file happens in the directory

specified by DocumentRoot.

Example:

This directive specifies the name of the website index file. The index is the default

page that opens when the client types the site URL (without having to type the

index name). This file must be in the directory specified by the DocumentRoot

directive.

The DirectoryIndex directive can specify several index file names separated by

spaces. For example, a default index page with dynamic content and, as a second

choice, a static page.

DirectoryIndex display-page

DocumentRoot /var/www/html
DirectoryIndex index.php index.htm

5.1.3 Configuration

- 22/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

THE Directory DIRECTIVE

The Directory tag is used to define directory-specific directives.

This tag applies rights to one or more directories. The directory path is entered as

an absolute.

Syntax:

Example:

The Directory section defines a block of directives applying to a part of the

server's file system. The directives here will only apply to the specified directory

(and sub-directories).

The syntax of this block accepts wildcards, but it is preferable to use the

DirectoryMatch block.

In the following example, we'll deny access to the server's local hard disk,

regardless of the client. The "/" directory represents the root of the hard disk.

The following example shows authorizing access to all clients'/var/www/html

publishing directory.

<Directory directory-path>
Defining user rights
</Directory>

<Directory /var/www/html/public>
 Require all granted # we allow everyone
</Directory>

<Directory />
 Require all denied
</Directory>

<Directory /var/www/html>
 Require all granted
</Directory>

5.1.3 Configuration

- 23/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

When the server finds an .htaccess file, it needs to know whether directives placed

in the file have authorization to modify the pre-existing configuration. The

AllowOverride directive controls the authorization in Directory directives. When

set to none , .htaccess files are completely ignored.

THE mod_status

The mod_status displays a /server-status or /server-info page summarizing server

status:

Please note that this module provides information that should not be accessible to

your users.

Shared hosting (section 3)

With shared hosting, the customer thinks they are visiting several servers. In

reality, there is just one server and several virtual sites.

To set up shared hosting, you need to set up virtual hosts:

declaring multiple listening ports

declaring multiple listening IP addresses (virtual hosting by IP)

declaring multiple server names (virtual hosting by name)

Each virtual site corresponds to a different tree structure.

Section 3 of the httpd.conf file declares these virtual hosts.

It is strongly recommended that you create a section 3 configuration file for each

virtual site to facilitate future updates.

<Location /server-status>
 SetHandler server-status
 Require local
</Location>

<Location /server-info>
 SetHandler server-info
 Require local
</Location>

•

•

•

5.1.3 Configuration

- 24/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Choose virtual hosting "by IP" or "by name." Mixing the two solutions is not

advisable for production use.

Configuring each virtual site in an independent configuration file

VirtualHosts are stored in /etc/httpd/conf.d/

The file extension is .conf

THE VirtualHost DIRECTIVE

The VirtualHost directive defines virtual hosts.

If you configure the Apache server with the basic directives seen above, you can

only publish one site. Indeed, you can not publish multiple sites with the default

settings: the same IP address, the same TCP port, and no hostname or unique

hostname.

Virtual sites will enable us to publish several websites on the same Apache server.

You will define blocks, each describing a website. In this way, each site will have its

own configuration.

For ease of understanding, a website is often associated with a single machine.

Virtual sites or hosts are so-called because they dematerialize the link between

machines and websites.

Example 1:

•

•

•

<VirtualHost IP-address[:port]>
 # if the "NameVirtualHost" directive is present
 # then "address-IP" must match the one entered
 # under "NameVirtualHost" as well as for "port".
 ...
 </VirtualHost>

Listen 192.168.0.10:8080
<VirtualHost 192.168.0.10:8080>
 DocumentRoot /var/www/site1/
 ErrorLog /var/log/httpd/site1-error.log
</VirtualHost>

Listen 192.168.0.11:9090

5.1.3 Configuration

- 25/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

IP-based virtual hosting applies specific guidelines based on the IP address and

port on which the request is received. This generally means serving different

websites on different ports or interfaces.

THE NameVirtualHost DIRECTIVE

The NameVirtualHost directive defines name-based virtual hosts.

This directive is mandatory for setting up name-based virtual hosts. With this

directive, you specify the IP address on which the server will receive requests from

name-based virtual hosts.

Syntax:

Example:

The directive must come before the virtual site description blocks. It designates the

IP addresses used to listen to client requests for virtual sites.

To listen for requests on all the server's IP addresses, use the * character.

Taking changes into account

For each configuration change, it is necessary to reload the configuration with the

following command:

<VirtualHost 192.168.0.11:9090>
 DocumentRoot /var/www/site2/
 ErrorLog /var/log/httpd/site2-error.log
</VirtualHost>

NameVirtualHost adresse-IP[:port]

NameVirtualHost 160.210.169.6:80

sudo systemctl reload httpd

5.1.3 Configuration

- 26/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Manual

A package called' httpd-manual' contains a site that acts as an Apache user manual.

You can access the manual with a web browser at http://127.0.0.1/manual when

installed.

The apachectl command

The apachectl is the server control interface for the Apache httpd server.

It is a very useful command with the -t or configtest , which runs a configuration

file syntax test.

It is very useful when used with Ansible handlers to test the configuration.

5.1.4 Security

When protecting your server with a firewall (which is a good thing), you might

need to consider opening it.

SELinux

By default, if SELinux security is active, it prevents the reading of a site from a

directory other than /var/www/ .

The directory containing the site must have the security context

httpd_sys_content_t .

sudo dnf install httpd-manual
sudo systemctl reload httpd

$ elinks http://127.0.0.1/manual

Note

sudo firewall-cmd --zone=public --add-service=http
sudo firewall-cmd --zone=public --add-service=https
sudo firewall-cmd --reload

5.1.4 Security

- 27/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

http://127.0.0.1/manual

You can check the current context with the command:

Add context with the following command:

It also prevents the opening of a non-standard port. Opening the port is a manual

operation using the semanage command (not installed by default).

User and Group directives

The User and Group directives define an Apache management account and group.

Historically, root ran Apache, which caused security problems. The root always

runs Apache, but then its identity is changed. Generally User apache and Group

apache .

Never ROOT!

The Apache server (httpd process) starts with the root superuser account. Each

client request triggers the creation of a "child" process. To limit risks, these child

processes are launched from a less privileged account.

The User and Group directives declare the account and group used to create child

processes.

This account and group must exist in the system (by default, this happens during

installation).

File permissions

As a general security rule, web server content must not belong to the process

running the server. In our case, the files should not belong to the apache user and

group since it has written access to the folders.

* ls -Z /dir

sudo chcon -vR --type=httpd_sys_content_t /dir

sudo semanage port -a -t http_port_t -p tcp 1664

5.1.4 Security

- 28/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You assign the contents to the unprivileged user, the root user, and the associated

group. Incidentally, you also take the opportunity to restrict the group's access

rights.

cd /var/www/html
sudo chown -R root:root ./*
sudo find ./ -type d -exec chmod 0755 "{}" \;
sudo find ./ -type f -exec chmod 0644 "{}" \;

5.1.4 Security

- 29/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

6. Part 2.2 Web Servers Nginx

6.1 Nginx web server

In this chapter, you will learn about the web server Nginx.

Objectives: You will learn how to:

 install and configure Nginx

nginx, http

Knowledge:

Complexity:

Reading time: 15 minutes

6.1.1 Generalities

Nginx is a free HTTP web server under BSD license. It was first developed in

Russia in 2002 by Igor Sysoev. In addition to the standard features of a web server,

Nginx provides a reverse proxy for the HTTP protocol, and a proxy for the POP

and IMAP messaging protocols.

The development of the Nginx server is a response to the C10K problem, which

supports ten thousand concurrent connections (standard on the modern web). This

is a real challenge for web servers.

Commercial support is available from Nginx Inc.

The server's internal architecture enables very high performance with low

memory consumption compared to the Apache web server.

Modules complementing the essential functions of the Nginx kernel are compile-

time bound. This means activation or deactivation cannot happen dynamically.

6. Part 2.2 Web Servers Nginx

- 30/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

A master process controls server processes, making it possible to modify

configuration or update software without stopping the service.

Nginx has a significant % market share of 28% on the busiest sites, just behind

Apache (41%).

Features

Nginx offers the following basic functions:

Hosting of static web pages

Automatic index page generation

Accelerated reverse proxy with cache

Load balancing

Fault tolerance

Cached support for FastCGI, uWSGI, SCGI, and Memcached cache server

Various filters for gzip, xslt, ssi, image transformation, and more

Support for SSL/TLS and SNI

HTTP/2 support

Other features:

Hosting by name or IP address

Keepalive management of client connections

Log management: syslog, rotation, buffer

URI rewriting

Access control: by IP, password, and more

FLV and MP4 streaming

6.1.2 Installation

Nginx is available directly from the app stream repository, and more recent

versions are available as a dnf module.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

6.1.2 Installation

- 31/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

6.1.3 Configuration

The location of the Nginx configuration is in /etc/nginx/nginx.conf .

This configuration file is a global server configuration file. Settings affect the entire

server.

The .htaccess file functionality known to Apache administrators does not exist in Nginx!

Provided here is the nginx.conf file, stripped of all comments:

sudo dnf install nginx
sudo systemctl enable nginx --now

Note

user nginx;
worker_processes auto;
error_log /var/log/nginx/error.log;
pid /run/nginx.pid;
include /usr/share/nginx/modules/*.conf;
events {

worker_connections 1024;
}
http {

log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';

access_log /var/log/nginx/access.log main;
sendfile on;
tcp_nopush on;
tcp_nodelay on;
keepalive_timeout 65;
types_hash_max_size 4096;
include /etc/nginx/mime.types;
default_type application/octet-stream;
include /etc/nginx/conf.d/*.conf;
server {

listen 80;
listen [::]:80;
server_name _;
root /usr/share/nginx/html;
include /etc/nginx/default.d/*.conf;
error_page 404 /404.html;
location = /404.html {

6.1.3 Configuration

- 32/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Default configuration guidelines:

The structure of the Nginx configuration is:

}
error_page 500 502 503 504 /50x.html;
location = /50x.html {
}

}
}

Directive Description

user Defines the process owner user and group . If the group is not specified, the group with the

same name as the user is used.

worker_processes Defines the number of processes. The optimum value depends on many factors, such as the

number of CPU cores and hard disk specifications. In case of doubt, the Nginx documentation

suggests a starting value equivalent to the number of CPU cores available (the auto value will

try to determine this).

pid Defines a file to store the PID value.

worker_connections Sets the maximum number of simultaneous connections a worker process can open (to the

client and mandated servers).

tcp_nopush tcp_nopush is inseparable from the sendfile option. It is used to optimize the quantity of

information sent simultaneously. Packets are only sent when they have reached their maximum

size.

tcp_nodelay Activating tcp_nodelay forces data in the socket to be sent immediately, regardless of packet

size, which is the opposite of what tcp_nopush does.

sendfile Optimizes the sending of static files (this option is not required for a proxy-inverse

configuration). If sendfile is enabled, Nginx ensures that all packets are completed before they

are sent to the client (thanks to tcp_nopush). When the last packet arrives, Nginx disables

tcp_nopush and forces data to be sent using tcp_nodelay .

keepalive_timeout The maximum time before closing an inactive connection.

types_hash_max_size Nginx maintains hash tables containing static information. Set the maximum size of the hash

table.

include Includes another file or files that match the template provided in the configuration.

default_type Default MIME type of a request.

ssl_protocols Accepted TLS protocol versions.

ssl_prefer_server_ciphers Prefers server cipher suite to client cipher suite.

access_log Configures access logs (see “log management” paragraph).

error_log Configures error logs (see “log management” paragraph).

gzip The ngx_http_gzip_module is a filter that compresses data transmitted in gzip format.

gzip_disable Disables gzip based on a regular expression.

6.1.3 Configuration

- 33/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

6.1.4 https configuration

To configure an HTTPS service, you must add a server block or modify an existing

one. A server block can listen on both port 443 and port 80.

global directives

events {
 # worker configuration
}

http {
 # http service configuration

 # Configure the first server listening on port 80
 server {
 listen 80 default_server;
 listen [::]:80 default_server;
 root /var/www/html;
 index index.html index.htm;
 server_name _;
 location / {
 try_files $uri $uri/ =404;
 }
 }
}

mail {
 # mail service configuration

global mail service directives
 server {
 # A first server listening on the pop protocol
 listen localhost:110;
 protocol pop3;
 proxy on;
 }

 server {
 # A second server listening on the imap protocol
 listen localhost:143;
 protocol imap;
 proxy on;
 }
}

6.1.4 https configuration

- 34/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can add this block, for example, to the new /etc/nginx/conf.d/

default_https.conf file:

or you can modify the default server to support HTTPS:

6.1.5 Log management

You can configure the error_log directive for error logs.

Syntax of the error_log directive:

The first parameter defines a file to receive error logs.

The second parameter determines the log level: debug, info, notice, warn, error,

crit, alert, or emerg (see syslog chapter of our admin guide).

The function of sending logs to syslog is with the “syslog:” prefix.

server {
listen 443 ssl default_server;
ssl_protocols TLSv1.3 TLSv1.2 TLSv1.1
ssl_certificate /path/to/cert.pem;
ssl_certificate_key /path/to/key.key;
root /var/www/html;
index index.html index.htm;
server_name _;
location / {

try_files $uri $uri/ =404;
}

}

server {
listen 80;
listen 443 ssl;
server_name _;
ssl_protocols TLSv1.3 TLSv1.2 TLSv1.1
ssl_certificate /path/to/cert.pem;
ssl_certificate_key /path/to/key.key;
...

}

error_log file [level];

6.1.5 Log management

- 35/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

6.1.6 Nginx as a reverse proxy

Reverse proxy functionality is with the ngx_http_upstream_module . It lets you define

groups of servers which are then called by the proxy_pass or fastcgi_pass

directives, memcached_pass , and more.

Example of a basic configuration, which distributes the load 2/3 to the first server

and 1/3 to the second application server:

You can declare servers as backups:

The server directive accepts many arguments:

max_fails=numberofattempts : sets the number of connection attempts that must fail

during the time period defined by the fail_timeout parameter for the server to be

considered unavailable. The default value is 1; 0 disables functionality.

fail_timeout=time : sets the time during which a defined number of connections

will cause the server to be unavailable, and sets the period of time during which

the server will be considered unavailable. The default value is 10 seconds.

access_log syslog:server=192.168.1.100:5514,tag=nginx debug;

upstream frontservers {
server front1.rockylinux.lan:8080 weight=2;
server front2.rockylinux.lan:8080 weight=1;

}

server {
location / {

proxy_pass http://docs.rockylinux.lan;
}

}

upstream frontservers {
...
server front3.rockylinux.lan:8080 backup;
server front4.rockylinux.lan:8080 backup;

}

•

•

6.1.6 Nginx as a reverse proxy

- 36/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

7. Part 3. Application servers

7.1 PHP and PHP-FPM

In this chapter, you will learn about PHP and PHP-FPM.

PHP (PHP Hypertext Preprocessor) is a source scripting language specially

designed for web application development. In 2024, PHP represented a little less

than 80% of the web pages generated in the world. PHP is open-source and is the

core of the most famous CMS (WordPress, Drupal, Joomla!, Magento, and others.).

PHP-FPM (FastCGI Process Manager) is integrated to PHP since its version 5.3.3.

The FastCGI version of PHP brings additional functionalities.

Objectives: You will learn how to:

 install a PHP application server

 configure PHP-FPM pool

 optimize a PHP-FPM application server

PHP, PHP-FPM, Application server

Knowledge:

Complexity:

Reading time: 30 minutes

7.1.1 Generalities

CGI (Common Gateway Interface) and FastCGI allow communication between the

web server (Apache or Nginx) and a development language (PHP, Python, Java):

In the case of CGI, each request creates a new process, which is less efficient in

performance.

FastCGI relies on a certain number of processes to treat its client requests.

•

•

7. Part 3. Application servers

- 37/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

PHP-FPM, in addition to better performances, brings:

The possibility of better partitioning the applications: launching processes

with different uid/gid, with personalized php.ini files,

The management of the statistics,

Log management,

Dynamic management of processes and restart without service interruption

('graceful').

Since Apache has a PHP module, php-fpm is more commonly used on an Nginx server.

7.1.2 Choose a PHP version

Rocky Linux, like its upstream, offers many versions of the language. Some of them

have reached the end of their life but are kept to continue hosting historical

applications that are not yet compatible with new versions of PHP. Please refer to

the supported versions page of the php.net website to choose a supported version.

To obtain a list of available versions, enter the following command:

The Remi repository offers more recent releases of PHP than the Appstream

repository, including versions 8.2 and 8.3.

•

•

•

•

Note

9.3 PHP module list

$ sudo dnf module list php

Rocky Linux 9 - AppStream
Name
Stream
Profiles
Summary
php 8.1
[d] common [d], devel, minimal

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

7.1.2 Choose a PHP version

- 38/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://www.php.net/supported-versions.php

To install the Remi repository, run the following command:

Enable the Remi repository by running the following command:

You can now activate a newer module (PHP 8.3) by entering the following

command:

Rocky provides different PHP modules from its AppStream repository.

You will note that Rocky 8.9's default version is 7.2, which has already reached its

end of life at the time of this writing.

sudo dnf install https://rpms.remirepo.net/enterprise/remi-release-9.rpm

sudo dnf config-manager --set-enabled remi

sudo dnf module enable php:remi-8.3

8.9 PHP module list

$ sudo dnf module list php

Rocky Linux 8 - AppStream
Name
Stream
Profiles
Summary
php 7.2
[d] common [d], devel,
minimal PHP scripting language
php 7.
3 common [d], devel,
minimal PHP scripting language
php 7.
4 common [d], devel,
minimal PHP scripting language
php 8.
0 common [d], devel,
minimal PHP scripting language

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

7.1.2 Choose a PHP version

- 39/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can activate a newer module by entering the following command:

You can now proceed to the installation of the PHP engine.

7.1.3 Installation of the PHP CGI mode

First, install and use PHP in CGI mode. It can only work with the Apache web

server and its mod_php module. This document's FastCGI part (php-fpm) explains

how to integrate PHP in Nginx (but also Apache).

The installation of PHP is relatively trivial. It consists of installing the main

package and the few modules you will need.

The example below installs PHP with the modules usually installed with it.

sudo dnf module enable php:8.0
===
===============
Package Architecture Version
Repository Size
===
===============
Enabling module streams:
httpd 2.4
nginx 1.14
php 8.0

Transaction Summary
===
===============

Is this ok [y/N]:

Transaction Summary
===
===============

Is this ok [y/N]: y
Complete!

9.3 install PHP

sudo dnf install php php-cli php-gd php-curl php-zip php-mbstring

7.1.3 Installation of the PHP CGI mode

- 40/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

During installation, you will be prompted to import GPG keys for the epel9 (Extra

Packages for Enterprise Linux 9) and Remi repositories. Enter y to import the keys:

You can check that the installed version corresponds to the expected one:

Extra Packages for Enterprise Linux 9 - x86_64
Importing GPG key 0x3228467C:
Userid : "Fedora (epel9) <epel@fedoraproject.org>"
Fingerprint: FF8A D134 4597 106E CE81 3B91 8A38 72BF 3228 467C
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-EPEL-9
Is this ok [y/N]: y
Key imported successfully
Remi's RPM repository for Enterprise Linux 9 - x86_64
Importing GPG key 0x478F8947:
Userid : "Remi's RPM repository (https://rpms.remirepo.net/)
<remi@remirepo.net>"
Fingerprint: B1AB F71E 14C9 D748 97E1 98A8 B195 27F1 478F 8947
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-remi.el9
Is this ok [y/N]: y
Key imported successfully
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.

Complete!

8.9 install PHP

sudo dnf install php php-cli php-gd php-curl php-zip php-mbstring

9.3 check PHP version

$ php -v
PHP 8.3.2 (cli) (built: Jan 16 2024 13:46:41) (NTS gcc x86_64)
Copyright (c) The PHP Group
Zend Engine v4.3.2, Copyright (c) Zend Technologies
with Zend OPcache v8.3.2, Copyright (c), by Zend Technologies

8.9 check PHP version

$ php -v
PHP 7.4.19 (cli) (built: May 4 2021 11:06:37) (NTS)

7.1.3 Installation of the PHP CGI mode

- 41/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.1.4 Apache Integration

To serve PHP pages in CGI mode, you must install the Apache server, configure it,

activate it, and start it.

Installation:

Do not forget to configure the firewall:

The default vhost should work out of the box. PHP provides a phpinfo() function

that generates a summary table of its configuration. It is useful to test whether

PHP is working well. However, be careful not to leave such test files on your

servers. They represent a huge security risk for your infrastructure.

Create the file /var/www/html/info.php (/var/www/html being the default vhost

directory of the default Apache configuration):

Use a web browser to check that the server works properly by going to the page

http://your-server-ip/info.php.

Copyright (c) The PHP Group
Zend Engine v3.4.0, Copyright (c) Zend Technologies
with Zend OPcache v7.4.19, Copyright (c), by Zend Technologies

•

sudo dnf install httpd

activation:

sudo systemctl enable --now httpd
sudo systemctl status httpd

•

sudo firewall-cmd --add-service=http --permanent
sudo firewall-cmd --reload

<?php
phpinfo();
?>

7.1.4 Apache Integration

- 42/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

http://your-server-ip/info.php

Do not leave the info.php file on your server!

7.1.5 Installation of the PHP cgi mode (PHP-FPM)

Noted earlier, many advantages exist for switching web hosting to PHP-FPM mode.

The installation entails only the php-fpm package:

As php-fpm is a service from a system point of view, you must activate and start it:

Configuration of the PHP cgi mode

The main configuration file is /etc/php-fpm.conf .

The php-fpm configuration files are widely commented on. Go and have a look!

As you can see, the files in the /etc/php-fpm.d/ directory with the .conf extension

are always included.

By default, a PHP process pool declaration named www , is in /etc/php-fpm.d/

www.conf .

Warning

sudo dnf install php-fpm

sudo systemctl enable --now php-fpm
sudo systemctl status php-fpm

include=/etc/php-fpm.d/*.conf
[global]
pid = /run/php-fpm/php-fpm.pid
error_log = /var/log/php-fpm/error.log
daemonize = yes

Note

[www]
user = apache
group = apache

7.1.5 Installation of the PHP cgi mode (PHP-FPM)

- 43/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Configuring the way to access php-fpm processes

Two ways exist for connecting.

With an inet-interface such as:

listen = 127.0.0.1:9000 .

Or with a UNIX socket:

listen = /run/php-fpm/www.sock .

Using a socket when the web server and PHP server are on the same machine removes the TCP/IP layer and optimizes the

performance.

When working with an interface, you have to configure listen.owner , listen.group ,

listen.mode to specify the owner, the owner group, and the rights of the UNIX

socket. Warning: Both servers (web and PHP) must have access rights on the

socket.

listen = /run/php-fpm/www.sock
listen.acl_users = apache,nginx
listen.allowed_clients = 127.0.0.1

pm = dynamic
pm.max_children = 50
pm.start_servers = 5
pm.min_spare_servers = 5
pm.max_spare_servers = 35

slowlog = /var/log/php-fpm/www-slow.log

php_admin_value[error_log] = /var/log/php-fpm/www-error.log
php_admin_flag[log_errors] = on
php_value[session.save_handler] = files
php_value[session.save_path] = /var/lib/php/session
php_value[soap.wsdl_cache_dir] = /var/lib/php/wsdlcache

Instructions Description

[pool] Process pool name. The configuration file can comprise several process pools (the pool's name in brackets

starts a new section).

listen Defines the listening interface or the Unix socket used.

Note

7.1.5 Installation of the PHP cgi mode (PHP-FPM)

- 44/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

When working with a socket, you must configure listen.allowed_clients to restrict

access to the PHP server to certain IP addresses.

Example: listen.allowed_clients = 127.0.0.1

Static or dynamic configuration

You can manage PHP-FPM processes statically or dynamically.

In static mode, pm.max_children sets a limit to the number of child processes:

This configuration starts with 10 processes.

In dynamic mode, PHP-FPM starts at most the number of processes specified by

the pm.max_children value. It first starts some processes corresponding to

pm.start_servers , keeping at least the value of pm.min_spare_servers of inactive

processes and, at most, pm.max_spare_servers of inactive processes.

Example:

PHP-FPM will create a new process to replace one that has processed several

requests equivalent to pm.max_requests .

By default, the value of pm.max_requests is 0, meaning processes are never

recycled. The pm.max_requests option can be attractive for applications with

memory leaks.

A third mode of operation is the ondemand mode. This mode only starts a process

when it receives a request. It is not an optimal mode for sites with strong

influences and is reserved for specific needs (sites with feeble requests,

management backend, etc.).

pm = static
pm.max_children = 10

pm = dynamic
pm.max_children = 5
pm.start_servers = 2
pm.min_spare_servers = 1
pm.max_spare_servers = 3

7.1.5 Installation of the PHP cgi mode (PHP-FPM)

- 45/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The configuration of the operating mode of PHP-FPM is essential to ensure the optimal functioning of your web server.

Process status

Like Apache and its mod_status module, PHP-FPM offers a page indicating the

process's status.

To activate the page, set its access path with the pm.status_path directive:

Logging long requests

The slowlog directive specifies the file that receives logging requests that are too

long (for instance, whose time exceeds the value of the request_slowlog_timeout

directive).

The default location of the generated file is /var/log/php-fpm/www-slow.log .

A value of 0 for request_slowlog_timeout disables logging.

Note

pm.status_path = /status

$ curl http://localhost/status_php
pool: www
process manager: dynamic
start time: 03/Dec/2021:14:00:00 +0100
start since: 600
accepted conn: 548
listen queue: 0
max listen queue: 15
listen queue len: 128
idle processes: 3
active processes: 3
total processes: 5
max active processes: 5
max children reached: 0
slow requests: 0

request_slowlog_timeout = 5
slowlog = /var/log/php-fpm/www-slow.log

7.1.5 Installation of the PHP cgi mode (PHP-FPM)

- 46/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.1.6 NGinx integration

The default setting of nginx already includes the necessary configuration to make

PHP work with PHP-FPM.

The configuration file fastcgi.conf (or fastcgi_params) is under /etc/nginx/ :

For nginx to process .php files, add the following directives to the site

configuration file:

If PHP-FPM is listening on port 9000:

If php-fpm is listening on a UNIX socket:

fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;

fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_param REQUEST_URI $request_uri;
fastcgi_param DOCUMENT_URI $document_uri;
fastcgi_param DOCUMENT_ROOT $document_root;
fastcgi_param SERVER_PROTOCOL $server_protocol;
fastcgi_param REQUEST_SCHEME $scheme;
fastcgi_param HTTPS $https if_not_empty;

fastcgi_param GATEWAY_INTERFACE CGI/1.1;
fastcgi_param SERVER_SOFTWARE nginx/$nginx_version;

fastcgi_param REMOTE_ADDR $remote_addr;
fastcgi_param REMOTE_PORT $remote_port;
fastcgi_param SERVER_ADDR $server_addr;
fastcgi_param SERVER_PORT $server_port;
fastcgi_param SERVER_NAME $server_name;

PHP only, required if PHP was built with --enable-force-cgi-redirect
fastcgi_param REDIRECT_STATUS 200;

location ~ \.php$ {
include /etc/nginx/fastcgi_params;
fastcgi_pass 127.0.0.1:9000;

}

7.1.6 NGinx integration

- 47/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

7.1.7 Apache integration

The configuration of Apache to use a PHP pool is quite simple. You have to use the

proxy modules with a ProxyPassMatch directive, for example:

7.1.8 Solid configuration of PHP pools

Optimizing the number of requests served and analyzing the memory used by the

PHP scripts is necessary to maximize the number of launched threads.

First of all, you need to know the average amount of memory used by a PHP

process with the command:

This will give you a pretty accurate idea of the average memory footprint of a PHP

process on this server.

The rest of this document results in a memory footprint of 120MB per process at

full load.

location ~ \.php$ {
include /etc/nginx/fastcgi_params;
fastcgi_pass unix:/run/php-fpm/www.sock;

}

<VirtualHost *:80>
ServerName web.rockylinux.org
DocumentRoot "/var/www/html/current/public"

<Directory "/var/www/html/current/public">
AllowOverride All
Options -Indexes +FollowSymLinks
Require all granted

</Directory>
ProxyPassMatch ^/(.*\.php(/.*)?)$ "fcgi://127.0.0.1:9000/var/www/html/

current/public"

</VirtualHost>

while true; do ps --no-headers -o "rss,cmd" -C php-fpm | grep "pool www" | awk
'{ sum+=$1 } END { printf ("%d%s\n", sum/NR/1024,"Mb") }' >> avg_php_proc;
sleep 60; done

7.1.7 Apache integration

- 48/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

On a server with 8Gb of RAM, keeping 1Gb for the system and 1Gb for the

OPCache (see the rest of this document), is 6Gb left to process PHP requests from

clients.

You can conclude that this server can accept at most 50 threads ((6*1024) / 120) .

An exemplary configuration of php-fpm specific to this use case is:

with:

pm.start_servers = 25% of max_children

pm.min_spare_servers = 25% of max_children

pm.max_spare_servers = 75% of max_children

7.1.9 Opcache configuration

The opcache (Optimizer Plus Cache) is the first level of cache that you can

influence.

It keeps the compiled PHP scripts in memory, which strongly impacts the execution

of the web pages (removes the reading of the script on disk + the compilation

time).

To configure it, you must work on:

The size of the memory dedicated to the opcache according to the hit ratio,

configuring it correctly

The number of PHP scripts to cache (number of keys + maximum number of

scripts)

The number of strings to cache

pm = dynamic
pm.max_children = 50
pm.start_servers = 12
pm.min_spare_servers = 12
pm.max_spare_servers = 36
pm.max_requests = 500

•

•

•

•

•

•

7.1.9 Opcache configuration

- 49/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

To install it:

To configure it, edit the /etc/php.d/10-opcache.ini configuration file:

Where:

opcache.memory_consumption corresponds to the amount of memory needed for the

opcache (increase this until obtaining a correct hit ratio).

opcache.interned_strings_buffer is the amount of strings to cache.

opcache.max_accelerated_files is near to the result of the

find ./ -iname "*.php"|wc -l command.

To configure the opcache, refer to an info.php page (including the phpinfo();)

(see, for example, the values of Cached scripts and Cached strings).

At each new deployment of new code, it will be necessary to empty the opcache (for example by restarting the php-fpm process).

Do not underestimate the speed gain that can be achieved by setting up and configuring the opcache correctly.

sudo dnf install php-opcache

opcache.memory_consumption=128
opcache.interned_strings_buffer=8
opcache.max_accelerated_files=4000

•

•

•

Note

Note

7.1.9 Opcache configuration

- 50/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

8. Part 4.1 Database servers MariaDB

MySQL, MariaDB and PostgreSQL are open-source RDBMS (Relational DataBase

Management System).

8.1 MariaDB and MySQL

In this chapter, you will learn about the RDBMS MariaDB and MySQL.

Objectives: You will learn how to:

 install, configure, and secure MariaDB server and MySQL server;

 perform some administrative actions on databases and users.

RDBMS, database, MariaDB, MySQL

Knowledge:

Complexity:

Reading time: 30 minutes

8.1.1 Generalities

MySQL was developed by Michael "Monty" Widenius (a Finnish computer

scientist),, who founded MySQL AB in 1995. MySQL AB was acquired by SUN in

2008, which in turn was acquired by Oracle in 2009. Oracle still owns the MySQL

software and distributes it under a dual GPL and proprietary license.

In 2009, Michael Widenius left SUN, founded Monty Program AB, and launched the

development of his community fork of MySQL: MariaDB under a GPL license. The

MariaDB Foundation governs the project and ensures that it remains free.

It was not long before most Linux distributions offered MariaDB packages instead

of MySQL ones, and major accounts such as Wikipedia and Google also adopted the

community fork.

8. Part 4.1 Database servers MariaDB

- 51/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

MySQL and MariaDB are among the world's most widely used RDBMSs

(professionally and by the general public), particularly for web applications

(LAMP: Linux + Apache + Mysql-MariaDB + Php).

Mysql-MariaDB's main competitors are:

PostgreSQL,

OracleDB,

Microsoft SQL Server.

Database services are multi-threaded and multi-user, run on most operating

systems (Linux, Unix, BSD, Mac OSx, Windows), and are accessible from many

programming languages (PHP, Java, Python, C, C++, Perl, others).

Support is offered for several engines, enabling the assignment of different engines

to different tables within the same database, depending on requirements:

MyISAM

the simplest, but does not support transactions or foreign keys. It is an indexed

sequential engine. MyISAM is now deprecated.

InnoDB

manages table integrity (foreign keys and transactions), but takes up more disk

space. This has been the default engine since MySQL version 5.6. It is a

transactional engine.

Memory

tables are stored in memory.

Archive

data compression on insertion saves disk space but slows down search queries

(cold data).

It is a matter of adopting an engine according to need: Archive for log storage,

Memory for temporary data, and so on.

•

•

•

8.1.1 Generalities

- 52/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

MariaDB/MySQL uses port 3306/TCP for network communication.

This chapter will deal with this version as the default version supplied with Rocky

is the MariaDB community version of the database. Only the differences between

MySQL and MariaDB are specifically dealt with.

8.1.2 Installation

Use the dnf command to install the mariadb-server package:

By default, the version installed on a Rocky 9 is 10.5.

Activate the service at startup and start it:

You can check the status of the mariadb service:

To install a more recent version, you'll need to use the dnf modules:

If you have not yet installed the mariadb server, activating the desired module

version will suffice:

sudo dnf install -y mariadb-server

sudo systemctl enable mariadb --now

sudo systemctl status mariadb

$ sudo dnf module list mariadb
Last metadata expiration check: 0:00:09 ago on Thu Jun 20 11:39:10 2024.
Rocky Linux 9 - AppStream
Name Stream
Profiles Summary
mariadb 10.11 client, galera,
server [d] MariaDB Module

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

$ sudo dnf module enable mariadb:10.11
Last metadata expiration check: 0:02:23 ago on Thu Jun 20 11:39:10 2024.
Dependencies resolved.
===

8.1.2 Installation

- 53/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can now install the package. The desired version will be automatically

installed:

About default users

Please note the logs provided by mariadb at first start (/var/log/messages):

8.1.3 Configuration

Configuration files can are in /etc/my.cnf and /etc/my.cnf.d/ .

==
Package Architecture
Version Repository Size
===
==
Enabling module streams:
mariadb 10.11

Transaction Summary
===
==
Is this ok [y/N]: y
Complete!

sudo dnf install -y mariadb-server

mariadb-prepare-db-dir[6560]: Initializing MariaDB database
mariadb-prepare-db-dir[6599]: Two all-privilege accounts were created.
mariadb-prepare-db-dir[6599]: One is root@localhost, it has no password, but
you need to
mariadb-prepare-db-dir[6599]: be system 'root' user to connect. Use, for
example, sudo mysql
mariadb-prepare-db-dir[6599]: The second is mysql@localhost, it has no password
either, but
mariadb-prepare-db-dir[6599]: you need to be the system 'mysql' user to
connect.
mariadb-prepare-db-dir[6599]: After connecting you can set the password, if you
would need to be
mariadb-prepare-db-dir[6599]: able to connect as any of these users with a
password and without sudo

8.1.3 Configuration

- 54/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Some important default options have been setup in the /etc/my.cnf.d/mariadb-

server.cnf :

As you can see, data is in the /var/lib/mysql per default. This folder can require a

lot of storage space and recurring volume increases. It is therefore advisable to

mount this folder on a dedicated partition.

8.1.4 Security

MariaDB and Mysql include a script to help you secure your server. It remove for

example remote root logins and sample users, the less-secure default options.

Use the mariadb-secure-installation and secure your server:

The script will prompt you to provide a password for your root user.

The mysql_secure_installation command is now a symlink to the mariadb-secure-installation command:

If providing a password each time you have to use mariadb's commands is a

problem, you can set up a ~/.my.cnf file with your credentials, that will be used per

default by mariadb to connect to your server.

[server]

[mysqld]
datadir=/var/lib/mysql
socket=/var/lib/mysql/mysql.sock
log-error=/var/log/mariadb/mariadb.log
pid-file=/run/mariadb/mariadb.pid
...

sudo mariadb-secure-installation

Note

$ ll /usr/bin/mysql_secure_installation
lrwxrwxrwx. 1 root root 27 Oct 12 2023 /usr/bin/mysql_secure_installation -> mariadb-secure-installation

[client]
user="root"
password="#######"

8.1.4 Security

- 55/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Ensure the permissions are restrictive enough to only allow the current user can

access:

This is not the best way. There is another solution more secure than storing a password in plain text. Since MySQL 5.6.6, it is now

possible to store your credentials in an encrypted login .mylogin.cnf , thanks to the mysql_config_editor command.

If your server runs a firewall (which is a good thing), you might need to consider

opening it, but only if you need your service accessible from the outside.

The best security is not to open your database server to the outside world (if the application server is hosted on the same server), or

to restrict access to authorized IPs only.

8.1.5 Administration

The mariadb command

The mariadb command is a simple SQL shell that supports interactive and non-

interactive use.

The mysql command is now a symlink to the mariadb command:

chmod 600 ~/.my.cnf

Warning

sudo firewall-cmd --zone=public --add-service=mysql
sudo firewall-cmd --reload

Note

mysql -u user -p [base]

Option Information

-u user Provides a username to connect with.

-p Asks for a password.

base The database to connect to.

Note

$ ll /usr/bin/mysql
lrwxrwxrwx. 1 root root 7 Oct 12 2023 /usr/bin/mysql -> mariadb

8.1.5 Administration

- 56/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Example:

The mariadb-admin command

The mariadb-admin command is a client for administering a MariaDB server.

The mariadb-admin provides several commands as version , variables , stop-slave

or start-slaves , create databasename , and so on.

Example:

$ sudo mariadb -u root
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 15
Server version: 10.5.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.003 sec)

mariadb-admin -u user -p command

Option Information

-u user Provides a username to connect with.

-p Asks for a password.

command A command to execute.

mariadb-admin -u root -p version

8.1.5 Administration

- 57/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The mysqladmin command is now a symlink to the mariadb-admin command:

8.1.6 About logs

MariaDB provides various logs:

Error log: Contains messages generated at service startup and shutdown and

important events (warnings and errors).

Binary log: This log (in binary format) records all actions that modify database

structure or data. If you need to restore a database, you will need to restore the

backup AND replay the binary log to recover the state of the database before the

crash.

Query log: All client requests are logged here.

Slow requests log: Slow queries, i.e., those that take longer than a set time to

execute, are logged separately in this log. By analyzing this file, you may be able

to take steps to reduce execution time (e.g., by setting up indexes or modifying

the client application).

With the exception of the binary log, these logs are in text format, so they can be

used directly!

To enable logging of long requests, edit the my.cnf configuration file to add the

following lines:

The minimum value for the long_query_time variable is 0, and the default value is

10 seconds.

Restart the service so the changes take effect.

Once the log file is full, you can analyze it with the mariadb-dumpslow command.

Note

$ ll /usr/bin/mysqladmin
lrwxrwxrwx. 1 root root 13 Oct 12 2023 /usr/bin/mysqladmin -> mariadb-admin

•

•

•

•

slow_query_log = 1
slow_query_log_file = /var/log/mysql/mysql-slow.log
long_query_time = 2

8.1.6 About logs

- 58/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Sort types can be :

8.1.7 About backup

As with any RDBMS, backing up a database is done while the data modification is

offline. You can do this by the following:

stopping the service, known as an offline backup;

while the service runs by temporarily locking out updates (suspending all

modifications). This is an online backup.

using a snapshot of the LVM file system, enabling data backup with a cold file

system.

The backup format can be an ASCII (text) file, representing the state of the

database and its data in the form of SQL commands or a binary file corresponding

to MySQL storage files.

While you can back up a binary file using common utilities such as tar or cpio, an

ASCII file requires a utility such as mariadb-dump .

The mariadb-dump command can perform a dump of your database.

During the process, data access is locked.

mariadb-dumpslow [options] [log_file ...]

Option Information

-t n Displays only the first n queries.

-s sort_type Sorts by number of queries.

-r Inverts results display.

Option Information

c according to number of requests.

t or at according to execution time or average execution time (a for average).

l or al according to lock time or its average.

r or aR as a function of the number of lines returned or its average.

•

•

•

8.1.7 About backup

- 59/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Do not forget that after restoring a full backup, restoring the binary files (binlogs) completes the reconstitution of the data.

The resulting file is usable to restore the database data. The database must still

exist, or you must have recreated it beforehand!:

8.1.8 Graphical tools

Graphical tools exist to facilitate the administration and management of database

data. Here are a few examples:

DBeaver

8.1.9 Workshop

In this workshop, you will install, configure, and secure your MariaDB server.

Task 1: Installation

Install the MariaDB-server package:

mariadb-dump -u root -p DATABASE_NAME > backup.sql

Note

mariadb -u root -p DATABASE_NAME < backup.sql

•

$ sudo dnf install mariadb-server
Last metadata expiration check: 0:10:05 ago on Thu Jun 20 11:26:03 2024.
Dependencies resolved.
===
==
Package Architecture
Version Repository Size
===
==
Installing:
mariadb-server x86_64 3:

10.5.22-1.el9_2 appstream 9.6 M
Installing dependencies:
...

8.1.8 Graphical tools

- 60/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://dbeaver.io/

Installation adds a mysql user to the system, with /var/lib/mysql as home

directory:

Enable and start the service:

Check the installation:

$ cat /etc/passwd
...
mysql:x:27:27:MySQL Server:/var/lib/mysql:/sbin/nologin
...

$ sudo systemctl enable mariadb --now
Created symlink /etc/systemd/system/mysql.service → /usr/lib/systemd/system/
mariadb.service.
Created symlink /etc/systemd/system/mysqld.service → /usr/lib/systemd/system/
mariadb.service.
Created symlink /etc/systemd/system/multi-user.target.wants/mariadb.service → /
usr/lib/systemd/system/mariadb.service.

$ sudo systemctl status mariadb
● mariadb.service - MariaDB 10.5 database server

Loaded: loaded (/usr/lib/systemd/system/mariadb.service; enabled; preset:
disabled)

Active: active (running) since Thu 2024-06-20 11:48:56 CEST; 1min 27s ago
Docs: man:mariadbd(8)

https://mariadb.com
Process: 6538 ExecStartPre=/usr/libexec/mariadb-check-socket (code=exited,

status=0/SUCCESS)
Process: 6560 ExecStartPre=/usr/libexec/mariadb-prepare-db-dir

mariadb.service (code=exited, status=0/SUCCESS)
Process: 6658 ExecStartPost=/usr/libexec/mariadb-check-upgrade

(code=exited, status=0/SUCCESS)
Main PID: 6643 (mariadbd)

Status: "Taking your SQL requests now..."
Tasks: 9 (limit: 11110)

Memory: 79.5M
CPU: 1.606s

CGroup: /system.slice/mariadb.service
└─6643 /usr/libexec/mariadbd --basedir=/usr

Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: The second
is mysql@localhost, it has no password either, but
Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: you need
to be the system 'mysql' user to connect.

8.1.9 Workshop

- 61/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Try connecting to the server:

Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: After
connecting you can set the password, if you would need to be
Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: able to
connect as any of these users with a password and without sudo
Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: See the
MariaDB Knowledgebase at https://mariadb.com/kb
Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: Please
report any problems at https://mariadb.org/jira
Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: The latest
information about MariaDB is available at https://mariadb.org>Jun 20 11:48:56
localhost.localdomain mariadb-prepare-db-dir[6599]: Consider joining MariaDB's
strong and vibrant community:
Jun 20 11:48:56 localhost.localdomain mariadb-prepare-db-dir[6599]: https://
mariadb.org/get-involved/
Jun 20 11:48:56 localhost.localdomain systemd[1]: Started MariaDB 10.5
database server.

$ sudo mariadb
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 9
Server version: 10.5.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.001 sec)

MariaDB [(none)]> exit
Bye

$ sudo mariadb-admin version
mysqladmin Ver 9.1 Distrib 10.5.22-MariaDB, for Linux on x86_64
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Server version 10.5.22-MariaDB

8.1.9 Workshop

- 62/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

As you can see, the root user does not need to provide a password. You will

correct that during the next task.

Task 2: Secure your server

Launch the mariadb-secure-installation and follow the instructions:

Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 7 min 24 sec

Threads: 1 Questions: 9 Slow queries: 0 Opens: 17 Open tables: 10 Queries
per second avg: 0.020

$ sudo mariadb-secure-installation

NOTE: RUNNING ALL PARTS OF THIS SCRIPT IS RECOMMENDED FOR ALL MariaDB
SERVERS IN PRODUCTION USE! PLEASE READ EACH STEP CAREFULLY!

In order to log into MariaDB to secure it, we'll need the current
password for the root user. If you've just installed MariaDB, and
haven't set the root password yet, you should just press enter here.

Enter current password for root (enter for none):
OK, successfully used password, moving on...

Setting the root password or using the unix_socket ensures that nobody
can log into the MariaDB root user without the proper authorisation.

You already have your root account protected, so you can safely answer 'n'.

Switch to unix_socket authentication [Y/n] y
Enabled successfully!
Reloading privilege tables..
 ... Success!

You already have your root account protected, so you can safely answer 'n'.

Change the root password? [Y/n] y
New password:
Re-enter new password:
Password updated successfully!
Reloading privilege tables..
 ... Success!

8.1.9 Workshop

- 63/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Try connecting again, with and without a password to your server:

By default, a MariaDB installation has an anonymous user, allowing anyone
to log into MariaDB without having to have a user account created for
them. This is intended only for testing, and to make the installation
go a bit smoother. You should remove them before moving into a
production environment.

Remove anonymous users? [Y/n] y
 ... Success!

Normally, root should only be allowed to connect from 'localhost'. This
ensures that someone cannot guess at the root password from the network.

Disallow root login remotely? [Y/n] y
 ... Success!

By default, MariaDB comes with a database named 'test' that anyone can
access. This is also intended only for testing, and should be removed
before moving into a production environment.

Remove test database and access to it? [Y/n] y
 - Dropping test database...
 ... Success!
 - Removing privileges on test database...
 ... Success!

Reloading the privilege tables will ensure that all changes made so far
will take effect immediately.

Reload privilege tables now? [Y/n] y
 ... Success!

Cleaning up...

All done! If you've completed all of the above steps, your MariaDB
installation should now be secure.

Thanks for using MariaDB!

$ mariadb -u root
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password:
NO)

$ mariadb -u root -p

8.1.9 Workshop

- 64/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Configure your firewall:

Task 3: Testing the installation

Verify your installation:

The version gives you information about the server.

Task 4: Create a new database and a user

Create a new database:

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 4
Server version: 10.5.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

MariaDB [(none)]>

sudo firewall-cmd --zone=public --add-service=mysql --permanent
sudo firewall-cmd --reload

$ mysqladmin -u root -p version
Enter password:
mysqladmin Ver 9.1 Distrib 10.5.22-MariaDB, for Linux on x86_64
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Server version 10.5.22-MariaDB
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 29 min 18 sec

Threads: 1 Questions: 35 Slow queries: 0 Opens: 20 Open tables: 13
Queries per second avg: 0.019

MariaDB [(none)]> create database NEW_DATABASE_NAME;

8.1.9 Workshop

- 65/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Create a new user and give him all rights on all tables of that database:

Replace localhost per % if you want to grant access from everywhere, or replace

per IP address if possible.

You can restrict the privileges granted. There are different types of permissions to

offer users:

SELECT: read data

USAGE: authorization to connect to the server (given by default when a new user

is created)

INSERT: add new tuples to a table.

UPDATE: modify existing tuples

DELETE: delete tuples

CREATE: create new tables or databases

DROP: delete existing tables or databases

ALL PRIVILEGES: all rights

GRANT OPTION: give or remove rights to other users

Do not forget to reload and apply the new rights:

Check:

MariaDB [(none)]> grant all privileges on NEW_DATABASE_NAME.* TO
'NEW_USER_NAME'@'localhost' identified by 'PASSWORD';

•

•

•

•

•

•

•

•

•

MariaDB [(none)]> flush privileges;

$ mariadb -u NEW_USER_NAME -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MariaDB connection id is 8
Server version: 10.5.22-MariaDB MariaDB Server

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

8.1.9 Workshop

- 66/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Add sample data into your database:

Task 5: Create a remote user

In this task, you will create a new user, grant access from the remote, and test a

connection with that user.

Use this user and the -h option to connect remotely to your server:

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| NEW_DATABASE_NAME |
| information_schema |
+--------------------+
2 rows in set (0.001 sec)

$ mariadb -u NEW_USER_NAME -p NEW_DATABASE_NAME
MariaDB [NEW_DATABASE_NAME]> CREATE TABLE users(

id INT NOT NULL AUTO_INCREMENT,
first_name VARCHAR(30) NOT NULL,
last_name VARCHAR(30) NOT NULL,
age INT DEFAULT NULL,
PRIMARY KEY (id));

Query OK, 0 rows affected (0.017 sec)

MariaDB [NEW_DATABASE_NAME]> INSERT INTO users (first_name, last_name, age)
VALUES ("Antoine", "Le Morvan", 44);
Query OK, 1 row affected (0.004 sec)

MariaDB [(none)]> grant all privileges on NEW_DATABASE_NAME.* TO
'NEW_USER_NAME'@'%' identified by 'PASSWORD';
Query OK, 0 rows affected (0.005 sec)

MariaDB [(none)]> flush privileges;
Query OK, 0 rows affected (0.004 sec)

$ mariadb -h YOUR_SERVER_IP -u NEW_USER_NAME -p NEW_DATABASE_NAME
Enter password:
...

MariaDB [NEW_DATABASE_NAME]>

8.1.9 Workshop

- 67/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Task 6: Perform an upgrade

Enable the module needed:

Upgrade the packages:

$ sudo dnf module enable mariadb:10.11
[sudo] password for antoine:
Last metadata expiration check: 2:00:16 ago on Thu Jun 20 11:50:27 2024.
Dependencies resolved.
===
==
Package Architecture
Version Repository Size
===
==Enabling module
streams:
mariadb 10.11

Transaction Summary
===
==
Is this ok [y/N]: y
Complete!

$ sudo dnf update mariadb
Last metadata expiration check: 2:00:28 ago on Thu Jun 20 11:50:27 2024.
Dependencies resolved.
===
==
Package Architecture
Version
Repository Size
===
==
Upgrading:
mariadb x86_64 3:

10.11.6-1.module+el9.4.0+20012+a68bdff7 appstream 1.
7 M
mariadb-backup x86_64 3:

10.11.6-1.module+el9.4.0+20012+a68bdff7 appstream 6.
7 M
mariadb-common x86_64 3:

10.11.6-1.module+el9.4.0+20012+a68bdff7 appstream
28 k
mariadb-errmsg x86_64 3:

8.1.9 Workshop

- 68/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

10.11.6-1.module+el9.4.0+20012+a68bdff7 appstream
254 k
mariadb-gssapi-server x86_64 3:

10.11.6-1.module+el9.4.0+20012+a68bdff7 appstream
15 k
mariadb-server x86_64 3:

10.11.6-1.module+el9.4.0+20012+a68bdff7 appstream
10 M
mariadb-server-utils x86_64 3:

10.11.6-1.module+el9.4.0+20012+a68bdff7 appstream
261 k

Transaction Summary
===
==
Upgrade 7 Packages

Total download size: 19 M
Is this ok [y/N]: y
Downloading Packages:
(1/7): mariadb-gssapi-
server-10.11.6-1.module+el9.4.0+20012+a68bdff7.x86_64.rpm
99 kB/s | 15 kB 00:00
(2/7): mariadb-server-
utils-10.11.6-1.module+el9.4.0+20012+a68bdff7.x86_64.rpm
1.1 MB/s | 261 kB 00:00
(3/7): mariadb-
errmsg-10.11.6-1.module+el9.4.0+20012+a68bdff7.x86_64.rpm
2.5 MB/s | 254 kB 00:00
(4/7): mariadb-
common-10.11.6-1.module+el9.4.0+20012+a68bdff7.x86_64.rpm
797 kB/s | 28 kB 00:00
(5/7):
mariadb-10.11.6-1.module+el9.4.0+20012+a68bdff7.x86_64.rpm
5.7 MB/s | 1.7 MB 00:00
(6/7): mariadb-
server-10.11.6-1.module+el9.4.0+20012+a68bdff7.x86_64.rpm
9.5 MB/s | 10 MB 00:01
(7/7): mariadb-
backup-10.11.6-1.module+el9.4.0+20012+a68bdff7.x86_64.rpm
7.7 MB/s | 6.7 MB 00:00

--
Total
13 MB/s | 19 MB 00:01
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.

8.1.9 Workshop

- 69/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Your databases now need upgrading (check your /var/log/messages as the service

complaints):

Do not forget to execute the upgrade script provided by MariaDB:

Running transaction

...

Complete!

mariadb-check-upgrade[8832]: The datadir located at /var/lib/mysql needs to be
upgraded using 'mariadb-upgrade' tool. This can be done using the following
steps:
mariadb-check-upgrade[8832]: 1. Back-up your data before with 'mariadb-
upgrade'
mariadb-check-upgrade[8832]: 2. Start the database daemon using 'systemctl
start mariadb.service'
mariadb-check-upgrade[8832]: 3. Run 'mariadb-upgrade' with a database user
that has sufficient privileges
mariadb-check-upgrade[8832]: Read more about 'mariadb-upgrade' usage at:
mariadb-check-upgrade[8832]: https://mariadb.com/kb/en/mysql_upgrade/

sudo mariadb-upgrade
Major version upgrade detected from 10.5.22-MariaDB to 10.11.6-MariaDB. Check
required!
Phase 1/8: Checking and upgrading mysql database
Processing databases
mysql
mysql.column_stats OK
mysql.columns_priv OK
mysql.db OK
...
Phase 2/8: Installing used storage engines... Skipped
Phase 3/8: Running 'mysql_fix_privilege_tables'
Phase 4/8: Fixing views
mysql.user OK
...
Phase 5/8: Fixing table and database names
Phase 6/8: Checking and upgrading tables
Processing databases
NEW_DATABASE_NAME
information_schema
performance_schema
sys
sys.sys_config OK

8.1.9 Workshop

- 70/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Task 6: Perform a dump

The mariadb-dump command can perform a dump of your database.

Verify:

Phase 7/8: uninstalling plugins
Phase 8/8: Running 'FLUSH PRIVILEGES'
OK

mariadb-dump -u root -p NEW_DATABASE_NAME > backup.sql

cat backup.sql
-- MariaDB dump 10.19 Distrib 10.11.6-MariaDB, for Linux (x86_64)
--
-- Host: localhost Database: NEW_DATABASE_NAME
-- --
-- Server version 10.11.6-MariaDB

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
...

--
-- Table structure for table `users`
--

DROP TABLE IF EXISTS `users`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `users` (

`id` int(11) NOT NULL AUTO_INCREMENT,
`first_name` varchar(30) NOT NULL,
`last_name` varchar(30) NOT NULL,
`age` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB AUTO_INCREMENT=2 DEFAULT CHARSET=latin1
COLLATE=latin1_swedish_ci;
/*!40101 SET character_set_client = @saved_cs_client */;

--
-- Dumping data for table `users`
--

LOCK TABLES `users` WRITE;
/*!40000 ALTER TABLE `users` DISABLE KEYS */;

8.1.9 Workshop

- 71/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

8.1.10 Check your Knowledge

 Which database version is installed by default?

 Which command do you use to apply rights changes?

8.1.11 Conclusion

In this chapter, you have installed and secured a MariaDB database server and

created a database and a dedicated user.

These skills are a prerequisite for the administration of your databases.

In the next section, you will see how to install the MySQL database instead of the

MariaDB fork.

INSERT INTO `users` VALUES
(1,'Antoine','Le Morvan',44);
/*!40000 ALTER TABLE `users` ENABLE KEYS */;
UNLOCK TABLES;
/*!40103 SET TIME_ZONE=@OLD_TIME_ZONE */;

...
-- Dump completed on 2024-06-20 14:32:41

MySQL 5.5

MariaDB 10.5

MariaDB 11.11

Mysql 8

flush rights

flush privileges

mariadb reload

apply

8.1.10 Check your Knowledge

- 72/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

9. Part 4.2 Database Servers MySQL

9.1 MySQL

In this chapter, you will learn how to install MySQL server.

Only notable differences between the MariaDB and MySQL versions are included.

Objectives: You will learn how to:

 install, configure, and secure the MariaDB server and MySQL server;

RDBMS, database, MariaDB, MySQL

Knowledge:

Complexity:

Reading time: 10 minutes

9.1.1 Installation of MySQL

By default, the installed version of MySQL is version 8.0.

This time, you have to install the mysql-server package:

and start the mysqld service:

Note

sudo dnf install mysql-server

sudo systemctl enable mysqld.service --now

9. Part 4.2 Database Servers MySQL

- 73/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You can now follow the previous chapter by replacing the following commands:

mariadb => mysql

mariadb-admin => mysql_admin

mariadb-dump => mysql_dump

mariadb-secure-installation => mysql_secure_installation

You will have to use a different repository to install the latest version of MySQL

server.

Visit this page: https://dev.mysql.com/downloads/repo/yum/ and copy the repository

URL.

For example:

When completed, you can perform the dnf update :

•

•

•

•

sudo dnf install -y https://dev.mysql.com/get/mysql84-community-release-
el9-1.noarch.rpm

$ dnf update
Error: This command has to be run with superuser privileges (under the root
user on most systems).
[antoine@localhost ~]$ sudo dnf update
MySQL 8.4 LTS Community
Server
377 kB/s | 226 kB 00:00
MySQL Connectors
Community
110 kB/s | 53 kB 00:00
MySQL Tools 8.4 LTS
Community
170 kB/s | 97 kB 00:00
Dependencies resolved.
===
==
Package Architecture
Version Repository

Size
===
==Installing:
mysql-community-client x86_64 8.

4.0-1.el9 mysql-8.4-lts-community 3.1 M

9.1.1 Installation of MySQL

- 74/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

replacing mysql.x86_64 8.0.36-1.el9_3
mysql-community-server x86_64 8.

4.0-1.el9 mysql-8.4-lts-community 50 M
replacing mariadb-connector-c-config.noarch 3.2.6-1.el9_0
replacing mysql-server.x86_64 8.0.36-1.el9_3

Installing dependencies:
...

Transaction Summary
===
==Install 7
Packages

Total download size: 59 M
Is this ok [y/N]: y
Downloading Packages:
(1/7): mysql-community-client-
plugins-8.4.0-1.el9.x86_64.rpm
3.4 MB/s | 1.4 MB 00:00
(2/7): mysql-community-
common-8.4.0-1.el9.x86_64.rpm
1.3 MB/s | 576 kB 00:00
(3/7): mysql-community-icu-data-
files-8.4.0-1.el9.x86_64.rpm
30 MB/s | 2.3 MB 00:00
(4/7): mysql-community-
client-8.4.0-1.el9.x86_64.rpm
5.8 MB/s | 3.1 MB 00:00
(5/7): mysql-community-
libs-8.4.0-1.el9.x86_64.rpm
6.8 MB/s | 1.5 MB 00:00
(6/7): net-
tools-2.0-0.62.20160912git.el9.x86_64.rpm
1.1 MB/s | 292 kB 00:00
(7/7): mysql-community-
server-8.4.0-1.el9.x86_64.rpm
48 MB/s | 50 MB 00:01

--
Total
30
MB/s | 59 MB 00:01
MySQL 8.4 LTS Community
Server
3.0 MB/s | 3.1 kB 00:00
Importing GPG key 0xA8D3785C:
Userid : "MySQL Release Engineering <mysql-build@oss.oracle.com>"
Fingerprint: BCA4 3417 C3B4 85DD 128E C6D4 B7B3 B788 A8D3 785C
From : /etc/pki/rpm-gpg/RPM-GPG-KEY-mysql-2023

9.1.1 Installation of MySQL

- 75/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Do not forget to re-enable and restart your server:

9.1.2 Check your Knowledge of MySQL

 Which MySQL database version is installed by default?

Is this ok [y/N]: y
Key imported successfully
Running transaction check
Transaction check succeeded.
Running transaction test
Transaction test succeeded.
Running transaction

Preparing :
...

Installed:
mysql-community-server-8.4.0-1.el9.x86_64
...

Complete!

sudo systemctl enable mysqld.service --now

MySQL 5.5

MariaDB 10.5

MariaDB 11.11

Mysql 8

9.1.2 Check your Knowledge of MySQL

- 76/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

10. Part 4.3 MariaDB database replication

10.1 Secondary server with MariaDB

This chapter will teach you how to configure Primary/Secondary system servers

with MariaDB.

Objectives: You will learn how to:

 activate the binlogs in your servers;

 set up a secondary server to replicate data from the primary server.

MariaDB, Replication, Primary, Secondary

Knowledge:

Complexity:

Reading time: 10 minutes

10.1.1 Generalities secondary server with MariaDB

As soon as you start using your database more intensively, you must replicate your

data on several servers.

This can be done in several ways:

Distribute write requests to the primary server and read requests to the

secondary server.

Perform database backups on the secondary server, which avoids blocking writes

to the primary server for the duration of the backups.

If your usage becomes even more demanding, you may consider switching to a

primary/primary system: replications are then made crosswise, but beware of the

risk of blocking the uniqueness of primary keys. Otherwise, you will need to switch

to a more advanced clustering system.

•

•

10. Part 4.3 MariaDB database replication

- 77/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

10.1.2 Configuration of secondary server with MariaDB

How to activate the binlogs

Perform this action on the primary and secondary servers:

Add the following options to your /etc/my.cnf.d/mariadb-server.cnf file, under the

[mariadb] key:

for the primary server and for the secondary server:

The server_id option must be unique on each server in the cluster, while the log-

basename option allows you to specify a prefix to the binlog files. If you do not do

this, you cannot rename your server.

You can now restart the MariaDB service on both servers:

You can check that binlogs files are well created:

[mariadb]
log-bin
server_id=1
log-basename=server1
binlog-format=mixed

[mariadb]
log-bin
server_id=2
log-basename=server2
binlog-format=mixed

sudo systemctl restart mariadb

$ ll /var/lib/mysql/
total 123332
...
-rw-rw----. 1 mysql mysql 0 Jun 21 11:07 multi-master.info
drwx------. 2 mysql mysql 4096 Jun 21 11:07 mysql
srwxrwxrwx. 1 mysql mysql 0 Jun 21 11:16 mysql.sock
-rw-rw----. 1 mysql mysql 330 Jun 21 11:16 server1-bin.000001

10.1.2 Configuration of secondary server with MariaDB

- 78/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

How to configure the replication

First of all, on the primary, you will need to create users authorized to replicate

data (be careful to restrict the IPs authorized):

or better for security (change '192.168.1.101' with your own secondary IP):

You must lock in new transactions if your primary server already contains data. In

contrast, the exporting or importing of data occurs to the secondary server(s) and

tells the secondary servers when to start replication. If your server does not yet

contain any data, the procedure is greatly simplified.

Prevent any changes to the data while you view the binary log position:

-rw-rw----. 1 mysql mysql 21 Jun 21 11:16 server1-bin.index
...

$ sudo mariadb

MariaDB [(none)]> CREATE USER 'replication'@'%' IDENTIFIED BY 'PASSWORD';
Query OK, 0 rows affected (0.002 sec)

MariaDB [(none)]> GRANT REPLICATION SLAVE ON *.* TO 'replication'@'%';
Query OK, 0 rows affected (0.002 sec)

$ sudo mariadb

MariaDB [(none)]> CREATE USER 'replication'@'192.168.1.101' IDENTIFIED BY
'PASSWORD';
Query OK, 0 rows affected (0.002 sec)

MariaDB [(none)]> GRANT REPLICATION SLAVE ON *.* TO
'replication'@'192.168.1.101';
Query OK, 0 rows affected (0.002 sec)

$ sudo mariadb

MariaDB [(none)]> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.021 sec)

MariaDB [(none)]> SHOW MASTER STATUS;
+--------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |

10.1.2 Configuration of secondary server with MariaDB

- 79/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Do not quit your session to keep the lock.

Record the File and Position details.

If your server contains data, it is time to create a backup and import it onto your

secondary server(s). Keep the lock for the duration of the backup and release it as

soon as the backup is complete. This reduces downtime (the time it takes to copy

and import the data on the secondary servers).

You can remove the lock now:

On the secondary server, you can now set up the primary server to replicate with

the following:

Replace the primary server IP with yours and the MASTER_LOG_FILE and

MASTER_LOG_POS values with those you previously registered.

Check if the replication is ok:

+--------------------+----------+--------------+------------------+
| server1-bin.000001 | 1009 | | |
+--------------------+----------+--------------+------------------+
1 row in set (0.000 sec)

$ sudo mariadb

MariaDB [(none)]> UNLOCK TABLES;
Query OK, 0 rows affected (0.000 sec)

MariaDB [(none)]> CHANGE MASTER TO
MASTER_HOST='192.168.1.100',
MASTER_USER='replication',
MASTER_PASSWORD='PASSWORD',
MASTER_PORT=3306,
MASTER_LOG_FILE='server1-bin.000001',
MASTER_LOG_POS=1009,
MASTER_CONNECT_RETRY=10;

Query OK, 0 rows affected, 1 warning (0.021 sec)

MariaDB [(none)]> START SLAVE;
Query OK, 0 rows affected (0.001 sec)

10.1.2 Configuration of secondary server with MariaDB

- 80/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The Seconds_Behind_Master is an interesting value to monitor as it can help you see

if there is a replication issue.

10.1.3 Workshop secondary server using MariaDB

For this workshop, you will need two servers with MariaDB services installed,

configured, and secured, as described in the previous chapters.

You will configure replication on the secondary server, create a new database,

insert data into it, and check that it is accessible on the secondary server.

Our two servers have the following IP addresses:

server1: 192.168.1.100

server2: 192.168.1.101

Remember to replace these values with your own.

Task 1: Create a dedicated replication user

On the primary server:

MariaDB [(none)]> SHOW SLAVE STATUS \G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event
Master_Host: 192.168.1.100
Master_User: replication

Master_Log_File: server1-bin.000001
Read_Master_Log_Pos: 1009

...
Seconds_Behind_Master: 0

Slave_SQL_Running_State: Slave has read all relay log; waiting for more
updates
...
1 row in set (0.001 sec)

•

•

$ sudo mariadb

MariaDB [(none)]> CREATE USER 'replication'@'192.168.1.101' IDENTIFIED BY
'PASSWORD';
Query OK, 0 rows affected (0.002 sec)

10.1.3 Workshop secondary server using MariaDB

- 81/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Task 2: Record the primary server values

Task 3: Activate the replication

On the secondary server:

Check if the replication is ok:

MariaDB [(none)]> GRANT REPLICATION SLAVE ON *.* TO
'replication'@'192.168.1.101';
Query OK, 0 rows affected (0.002 sec)

$ sudo mariadb

MariaDB [(none)]> FLUSH TABLES WITH READ LOCK;
Query OK, 0 rows affected (0.021 sec)

MariaDB [(none)]> SHOW MASTER STATUS;
+--------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+--------------------+----------+--------------+------------------+
| server1-bin.000001 | 1009 | | |
+--------------------+----------+--------------+------------------+
1 row in set (0.000 sec)

MariaDB [(none)]> UNLOCK TABLES;
Query OK, 0 rows affected (0.000 sec)

MariaDB [(none)]> CHANGE MASTER TO
MASTER_HOST='192.168.1.100',
MASTER_USER='replication',
MASTER_PASSWORD='PASSWORD',
MASTER_PORT=3306,
MASTER_LOG_FILE='server1-bin.000001',
MASTER_LOG_POS=1009,
MASTER_CONNECT_RETRY=10;

Query OK, 0 rows affected, 1 warning (0.021 sec)

MariaDB [(none)]> START SLAVE;
Query OK, 0 rows affected (0.001 sec)

MariaDB [(none)]> SHOW SLAVE STATUS \G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event

10.1.3 Workshop secondary server using MariaDB

- 82/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Task 4: Create a new database and a user

On the primary server:

On the secondary server, check for the creation of the database:

On the secondary server, try connecting the new user created on the primary:

Master_Host: 192.168.1.100
Master_User: replication

Master_Log_File: server1-bin.000001
Read_Master_Log_Pos: 1009

...
Seconds_Behind_Master: 0

Slave_SQL_Running_State: Slave has read all relay log; waiting for more
updates
...
1 row in set (0.001 sec)

MariaDB [(none)]> create database NEW_DATABASE_NAME;
Query OK, 1 row affected (0.002 sec)

MariaDB [(none)]> grant all privileges on NEW_DATABASE_NAME.* TO
'NEW_USER_NAME'@'localhost' identified by 'PASSWORD';
Query OK, 0 rows affected (0.004 sec)

MariaDB [(none)]> show databases;
+--------------------+
| Database |
+--------------------+
| NEW_DATABASE_NAME |
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+

$ mariadb -u NEW_USER_NAME -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MariaDB [(none)]> show databases;
+--------------------+
| Database |

10.1.3 Workshop secondary server using MariaDB

- 83/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Task 5: Insert new data

Insert new data on the primary server:

On the secondary server, check that data are replicated:

+--------------------+
| NEW_DATABASE_NAME |
| information_schema |
+--------------------+
2 rows in set (0.000 sec)

MariaDB [(none)]> use NEW_DATABASE_NAME
Database changed

MariaDB [(none)]> CREATE TABLE users(
-> id INT NOT NULL AUTO_INCREMENT,
-> first_name VARCHAR(30) NOT NULL,
-> last_name VARCHAR(30) NOT NULL,
-> age INT DEFAULT NULL,
-> PRIMARY KEY (id));

MariaDB [NEW_DATABASE_NAME]> INSERT INTO users (first_name, last_name, age)
VALUES ("Antoine", "Le Morvan", 44);
Query OK, 1 row affected (0.004 sec)

MariaDB [(none)]> use NEW_DATABASE_NAME
Database changed

MariaDB [NEW_DATABASE_NAME]> show tables;
+-----------------------------+
| Tables_in_NEW_DATABASE_NAME |
+-----------------------------+
| users |
+-----------------------------+
1 row in set (0.000 sec)

MariaDB [NEW_DATABASE_NAME]> SELECT * FROM users;
+----+------------+-----------+------+
| id | first_name | last_name | age |
+----+------------+-----------+------+
| 1 | Antoine | Le Morvan | 44 |
+----+------------+-----------+------+
1 row in set (0.000 sec)

10.1.3 Workshop secondary server using MariaDB

- 84/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

10.1.4 Check your Knowledge of the secondary server with MariaDB

 Each server must have the same ID within a cluster.

 Binary logs must be enabled before replication is activated.

10.1.5 Conclusion about the secondary server with MariaDB

As you can see, creating one or more secondary servers is a relatively easy action,

but it does require service interruption on the main server.

However, it offers many advantages: high data availability, load balancing, and

simplified backup.

In a central server crash, one of the secondary servers can be promoted to the

central server.

True

False

True

False

It depends

10.1.4 Check your Knowledge of the secondary server with MariaDB

- 85/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

11. Part 5. Load balancing, caching and proxyfication

In this part, we will discuss existing solutions for improving traffic performance

and accepting more and more client connections.

11. Part 5. Load balancing, caching and proxyfication

- 86/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

12. Part 5.1 HAProxy

This content is not written yet.

Info

12. Part 5.1 HAProxy

- 87/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

13. Part 5.2 Varnish

13.1 Varnish

This chapter will teach you about the web accelerator proxy cache: Varnish.

Objectives: You will learn how to:

 Install and configure Varnish;

 Cache the content of a website.

reverse-proxy, cache

Knowledge:

Complexity:

Reading time: 30 minutes

13.1.1 Generalities

Varnish is an HTTP reverse-proxy-cache service or a website accelerator.

Varnish receives HTTP requests from visitors:

if the response to the cached request is available, it returns the response directly

to the client from the server's memory,

if it does not have the response, Varnish addresses the web server. Varnish then

sends the request to the web server, retrieves the response, stores it in its cache,

and responds to the client.

Responding from the in-memory cache improves response times for clients. In this

case, there is no access to physical disks.

•

•

13. Part 5.2 Varnish

- 88/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

By default, Varnish listens on port 6081 and uses VCL (Varnish Configuration

Language) for its configuration. Thanks to VCL, it is possible to:

Decide the content the client receives by way of transmission

What the cached content is

From what site and how do modifications of the response occur?

Varnish is extensible with VMOD modules (Varnish Modules).

Ensuring high availability

The use of several mechanisms ensures high availability throughout a web chain:

If Varnish is behind load balancers(LBs), they are already in HA mode, as the LBs

are generally in cluster mode. A check from the LBs verifies varnish availability. If

a varnish server no longer responds, it is automatically removed from the pool of

available servers. In this case, the Varnish is in ACTIVE/ACTIVE mode.

if varnish is not behind an LB cluster, clients address a VIP (see Heartbeat

chapter) shared between the 2 varnishes. In this case, varnish is in ACTIVE/

PASSIVE mode. The VIP switches to the second varnish node if the active server

is unavailable.

When a backend is no longer available, you can remove it from the varnish

backend pool, either automatically (with a health check) or manually in CLI mode

(useful for easing upgrades or updates).

Ensuring scalability

If the backends are no longer sufficient to support the workload:

either add more resources to the backends and reconfigure the middleware

or add another backend to the varnish backend pool

Facilitating scalability

A web page is often composed of HTML (often dynamically generated by PHP) and

more static resources (JPG, gif, CSS, js, and so on) during creation. It quickly

•

•

•

•

•

•

•

•

13.1.1 Generalities

- 89/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

becomes interesting to cache the cacheable resources (the static ones), which

offloads many requests from the backends.

Caching web pages (HTML, PHP, ASP, JSP, etc.) is possible but more complicated. You need to know the application and whether the

pages are cacheable, which should be true with a REST API.

When a client accesses a web server directly, the server must return the same

image as often as the client requests. Once the client has received the image for

the first time, it is cached on the browser side, depending on the configuration of

the site and the web application.

When accessing the server behind a properly configured cache server, the first

client requesting the image will initiate an initial backend request. However,

caching of the image will occur for a certain period of time, and subsequent

delivery will be directed to other clients requesting the same resource.

Although a well-configured browser-side cache reduces the number of requests to

the backend, it complements the use of a varnish proxy cache.

TLS certificate management

Varnish cannot communicate in HTTPS (and it is not its role to do so).

The certificate must, therefore, be either:

carried by the LB when the flow passes through it (the recommended solution is

to centralize the certificate, etc.). The flow then passes unencrypted through the

data center.

carried by an Apache, Nginx, or HAProxy service on the varnish server itself,

which only acts as a proxy to the varnish (from port 443 to port 80). This solution

is useful if accessing varnish directly.

Similarly, Varnish cannot communicate with backends on port 443. When

necessary, you need to use an Nginx or Apache reverse proxy to decrypt the

request for varnish.

Note

•

•

•

13.1.1 Generalities

- 90/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

How it works

In a basic Web service, the client communicates directly with the service with TCP

on port 80.

To use the cache, the client must communicate with the web service on the default

Varnish port 6081.

To make the service transparent to the client, you must change the default listening

port for Varnish and the web service vhosts.

To provide an HTTPS service, add either a load balancer upstream of the varnish

service or a proxy service on the varnish server, such as Apache, Nginx, or

HAProxy.

13.1.1 Generalities

- 91/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

13.1.2 Configuration

Installation is simple:

Configuring the varnish daemon

Since systemctl , varnish parameters are setup thanks to the service file /usr/lib/

systemd/system/varnish.service :

dnf install -y varnish
systemctl enable varnish
systemctl start varnish

[Unit]
Description=Varnish Cache, a high-performance HTTP accelerator
After=network-online.target

[Service]
Type=forking
KillMode=process

Maximum number of open files (for ulimit -n)
LimitNOFILE=131072

Locked shared memory - should suffice to lock the shared memory log
(varnishd -l argument)
Default log size is 80MB vsl + 1M vsm + header -> 82MB
unit is bytes
LimitMEMLOCK=85983232

Enable this to avoid "fork failed" on reload.
TasksMax=infinity

Maximum size of the corefile.
LimitCORE=infinity

ExecStart=/usr/sbin/varnishd -a :6081 -f /etc/varnish/default.vcl -s malloc,
256m
ExecReload=/usr/sbin/varnishreload

[Install]
WantedBy=multi-user.target

13.1.2 Configuration

- 92/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Change the default values thanks to systemctl edit varnish.service : this will create

the /etc/systemd/system/varnish.service.d/override.conf file:

You can select the option several times to specify a cache storage backend. Possible

storage types are malloc (cache in memory, then swap if needed), or file (create a

file on disk, then map to memory). Sizes are expressed in K/M/G/T (kilobytes,

megabytes, gigabytes, or terabytes).

Configuring the backends

Varnish uses a specific language called VCL for its configuration.

This involves compiling the VCL configuration file in C. If compilation is successful

with no alarms, the service can be restarted.

You can test the varnish configuration with the following command:

It is advisable to check the VCL syntax before restarting the varnishd daemon.

Reload the configuration with the command:

A systemctl restart varnishd empties the varnish cache and causes a peak load on

the backends. You should, therefore, avoid reloading varnishd .

$ sudo systemctl edit varnish.service
[Service]
ExecStart=/usr/sbin/varnishd -a :6081 -f /etc/varnish/default.vcl -s malloc,
512m

varnishd -C -f /etc/varnish/default.vcl

Note

systemctl reload varnishd

Warning

13.1.2 Configuration

- 93/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

To configure Varnish, please follow the recommendations on this page: https://www.getpagespeed.com/server-setup/varnish/varnish-

virtual-hosts.

13.1.3 VCL language

Subroutines

Varnish uses VCL files, segmented into subroutines containing the actions to run.

These subroutines run only in the specific cases they define. The default /etc/

varnish/default.vcl file contains the vcl_recv , vcl_backend_response and

vcl_deliver routines:

Note

#
This is an example VCL file for Varnish.
#
It does not do anything by default, delegating control to the
builtin VCL. The builtin VCL is called when there is no explicit
return statement.
#
See the VCL chapters in the Users Guide at https://www.varnish-cache.org/
docs/
and http://varnish-cache.org/trac/wiki/VCLExamples for more examples.

Marker to tell the VCL compiler that this VCL has been adapted to the
new 4.0 format.
vcl 4.0;

Default backend definition. Set this to point to your content server.
backend default {

.host = "127.0.0.1";

.port = "8080";
}

sub vcl_recv {

}

sub vcl_backend_response {

}

sub vcl_deliver {

13.1.3 VCL language

- 94/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://www.getpagespeed.com/server-setup/varnish/varnish-virtual-hosts
https://www.getpagespeed.com/server-setup/varnish/varnish-virtual-hosts

vcl_recv: routine called before sending the request to the backend. In this

routine, you can modify HTTP headers and cookies, choose the backend, etc. See

actions set req .

vcl_backend_response: routine called after reception of the backend response

(beresp means BackEnd RESPonse). See set bereq. and set beresp. actions.

vcl_deliver: This routine is useful for modifying Varnish output. If you need to

modify the final object (e.g., add or remove a header), you can do so in

vcl_deliver .

VCL operators

= : assignment

== : comparison

~ : comparison in combination with a regular expression and ACLs

! : negation

&& : and logic

|| : or logical

Varnish objects

req: the request object. Creates the req when Varnish receives the request. Most

of the work in the vcl_recv subroutine concerns this object.

bereq: the request object destined for the web server. Varnish creates this object

from req .

beresp: the web server response object. It contains the object headers from the

application. You can modify the server response in the vcl_backend_response

subroutine.

resp: the HTTP response sent to the client. Modify this object with the

vcl_deliver subroutine.

obj: the cached object. Read-only.

}

•

•

•

•

•

•

•

•

•

•

•

•

•

•

13.1.3 VCL language

- 95/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Varnish actions

The most frequent actions:

pass: When returned, the request and subsequent response will come from the

application server. No application of cache occurs. pass returns from the

vcl_recv subroutine.

hash: When returned from vcl_recv , Varnish will serve the content from the

cache even if the request's configuration specifies passing without a cache.

pipe: Used to manage flows. In this case, Varnish will no longer inspect each

request but let all bytes pass to the server. Websockets or video stream

management, for example, use pipe .

deliver: Delivers the object to the client. Usually from the vcl_backend_response

subroutine.

restart: Restarts the request processing process. Retains modifications to the

req object.

retry: Transfers the request back to the application server. Used from

vcl_backend_response or vcl_backend_error if the application response is

unsatisfactory.

In summary, illustrated in the diagram below are the possible interactions between

subroutines and actions:

•

•

•

•

•

•

13.1.3 VCL language

- 96/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

13.1.3 VCL language

- 97/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

13.1.4 Verification/Testing/Troubleshooting

It is possible to verify that a page comes from the varnish cache from the HTTP

response headers:

13.1.5 Backends

Varnish uses the term backend for the vhosts it needs to proxy.

You can define several backends on the same Varnish server.

Configuring backends is through /etc/varnish/default.vcl .

ACL management

Apply ACL:

Deny ACL
acl deny {
"10.10.0.10"/32;
"192.168.1.0"/24;
}

13.1.4 Verification/Testing/Troubleshooting

- 98/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Do not cache certain pages:

POST and cookies settings

Varnish never caches HTTP POST requests or requests containing cookies (whether

from the client or the backend).

If the backend uses cookies, content caching will not occur.

To correct this behavior, you can unset the cookies in your requests:

Distribute requests to different backends

When hosting several sites, such as a document server () and a wiki (), it is possible

to distribute requests to the right backend.

Backends declaration:

Block ACL deny IPs
if (client.ip ~ forbidden) {

error 403 "Access forbidden";
}

Do not cache login and admin pages
if (req.url ~ "/(login|admin)") {

return (pass);
}

sub vcl_recv {
unset req.http.cookie;

}

sub vcl_backend_response {
unset beresp.http.set-cookie;

}

backend docs {
.host = "127.0.0.1";
.port = "8080";

}

backend blog {

13.1.5 Backends

- 99/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Modification of req.backend object occurs according to the host called in the HTTP

request in the vcl_recv subroutine:

Load distribution

Varnish can handle load balancing with specific backends called directors.

The round-robin director distributes requests to the round-robin backends

(alternately). You can assign a weight to each backend.

The client director distributes requests according to a sticky session affinity on any

header element (that is, with a session cookie). In this case, a client is always

returned to the same backend.

Backends declaration

The director allows you to associate the 2 defined backends.

.host = "127.0.0.1";

.port = "8081";
}

sub vcl_recv {
if (req.http.host ~ "^doc.rockylinux.org$") {

set req.backend = docs;
}

if (req.http.host ~ "^wiki.rockylinux.org$") {
set req.backend = wiki;

}
}

backend docs1 {
.host = "192.168.1.10";
.port = "8080";

}

backend docs2 {
.host = "192.168.1.11";
.port = "8080";

}

13.1.5 Backends

- 100/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Director declaration:

All that remains is to define the director as a backend to the requests:

Managing backends with CLI

Marking backends as sick or healthy is possible for administration or maintenance

purposes. This action allows you to remove a node from the pool without modifying

the Varnish server configuration (without restarting it) or stopping the backend

service.

View backend status: The backend.list command displays all backends, even those

without a health check (probe).

To switch from one state to another:

director docs_director round-robin {
{ .backend = docs1; }
{ .backend = docs2; }

}

sub vcl_recv {
set req.backend = docs_director;

}

$ varnishadm backend.list
Backend name Admin Probe
site.default probe Healthy (no probe)
site.front01 probe Healthy 5/5
site.front02 probe Healthy 5/5

varnishadm backend.set_health site.front01 sick

varnishadm backend.list
Backend name Admin Probe
site.default probe Healthy (no probe)
site.front01 sick Sick 0/5
site.front02 probe Healthy 5/5

varnishadm backend.set_health site.front01 healthy

varnishadm backend.list

13.1.5 Backends

- 101/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

To let Varnish decide on the state of its backends, it is imperative to manually

switch backends to sick or healthy backends and back to auto mode.

Declaring the backends is done by following: https://github.com/mattiasgeniar/

varnish-6.0-configuration-templates.

13.1.6 Apache logs

As the HTTP service is reverse proxied, the web server will no longer have access

to the client's IP address but to the Varnish service.

To take reverse proxy into account in Apache logs, change the format of the event

log in the server configuration file:

and take this new format into account in the website vhost:

and make it Varnish compatible:

Backend name Admin Probe
site.default probe Healthy (no probe)
site.front01 probe Healthy 5/5
site.front02 probe Healthy 5/5

varnishadm backend.set_health site.front01 auto

LogFormat "%{X-Forwarded-For}i %l %u %t "%r" %>s %b "%{Referer}i" "%{User-
Agent}i"" varnishcombined

CustomLog /var/log/httpd/www-access.log.formatux.fr varnishcombined

if (req.restarts == 0) {
if (req.http.x-forwarded-for) {

set req.http.X-Forwarded-For = req.http.X-Forwarded-For + ", " + client.ip;
} else {
set req.http.X-Forwarded-For = client.ip;

}
}

13.1.6 Apache logs

- 102/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://github.com/mattiasgeniar/varnish-6.0-configuration-templates
https://github.com/mattiasgeniar/varnish-6.0-configuration-templates

13.1.7 Cache purge

A few requests to purge the cache:

on the command line:

using a secret and a port other than the default:

on the CLI:

via an HTTP PURGE request:

Configuring Varnish to accept this request is done with:

varnishadm 'ban req.url ~ .'

varnishadm -S /etc/varnish/secret -T 127.0.0.1:6082 'ban req.url ~ .'

varnishadm

varnish> ban req.url ~ ".css$"
200

varnish> ban req.http.host == example.com
200

varnish> ban req.http.host ~ .
200

curl -X PURGE http://example.com/foo.txt

acl local {
"localhost";
"10.10.1.50";

}

sub vcl_recv {
directive to be placed first,
otherwise another directive may match first
and the purge will never be performed
if (req.method == "PURGE") {

if (client.ip ~ local) {
return(purge);

13.1.7 Cache purge

- 103/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

13.1.8 Log management

Varnish writes its logs in memory and binary to not penalize its performance. When

it runs out of memory space, it rewrites new records on top of old ones, starting

from the beginning of its memory space.

It is possible to consult the logs with the varnishstat (statistics), varnishtop (top

for Varnish), varnishlog (verbose logging), or varnishnsca (logs in NCSA format,

like Apache) tools:

Using the -q option to apply filters to logs is done using:

varnishlog and varnishnsca daemons logs to disk independently of the varnishd

daemon. The varnishd daemon continues to populate its logs in memory without

penalizing performance towards clients; then, the other daemons copy the logs to

disk.

13.1.9 Workshop

For this workshop, you will need one server with Apache services installed,

configured, and secured, as described in the previous chapters.

You will configure a reverse proxy cache in front of it.

Your server has the following IP addresses:

server1: 192.168.1.10

}
}

}

varnishstat
varnishtop -i ReqURL
varnishlog
varnishnsca

varnishlog -q 'TxHeader eq MISS' -q "ReqHeader ~ '^Host: rockylinux\.org$'"
varnishncsa -q "ReqHeader eq 'X-Cache: MISS'"

•

13.1.8 Log management

- 104/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

If you do not have a service to resolve names, fill the /etc/hosts file with content

like the following:

Task 1: Installation and configuration of Apache

Verify:

Task 2: Install varnish

$ cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

192.168.1.10 server1 server1.rockylinux.lan

sudo dnf install -y httpd mod_ssl
sudo systemctl enable httpd --now
sudo firewall-cmd --permanent --add-service=http
sudo firewall-cmd --permanent --add-service=https
sudo firewall-cmd --reload
echo "<html><body>Node $(hostname -f)</body></html>" | sudo tee "/var/www/html/
index.html"

$ curl http://server1.rockylinux.lan
<html><body>Node server1.rockylinux.lan</body></html>

$ curl -I http://server1.rockylinux.lan
HTTP/1.1 200 OK
Date: Mon, 12 Aug 2024 13:16:18 GMT
Server: Apache/2.4.57 (Rocky Linux) OpenSSL/3.0.7
Last-Modified: Mon, 12 Aug 2024 13:11:54 GMT
ETag: "36-61f7c3ca9f29c"
Accept-Ranges: bytes
Content-Length: 54
Content-Type: text/html; charset=UTF-8

sudo dnf install -y varnish
sudo systemctl enable varnishd --now
sudo firewall-cmd --permanent --add-port=6081/tcp --permanent
sudo firewall-cmd --reload

13.1.9 Workshop

- 105/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Task 3: Configure Apache as a backend

Modify /etc/varnish/default.vcl to use apache (port 80) as backend:

Reload Varnish

Check if varnish works:

As you can see, Apache serves the index page.

Some headers have been added, giving us information that our request was

handled by varnish (header Via) and the cached time of the page (header Age),

which tells us that our page was served directly from the varnish memory instead

of from the disk with Apache.

Task 4: Remove some headers

We will remove some headers that can give unneeded information to hackers.

In the sub vcl_deliver , add the following:

Default backend definition. Set this to point to your content server.
backend default {

.host = "127.0.0.1";

.port = "80";
}

sudo systemctl reload varnish

$ curl -I http://server1.rockylinux.lan:6081
HTTP/1.1 200 OK
Server: Apache/2.4.57 (Rocky Linux) OpenSSL/3.0.7
X-Varnish: 32770 6
Age: 8
Via: 1.1 varnish (Varnish/6.6)

$ curl http://server1.rockylinux.lan:6081
<html><body>Node server1.rockylinux.lan</body></html>

sub vcl_deliver {
unset resp.http.Server;

13.1.9 Workshop

- 106/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Test your config and reload varnish:

Check the differences:

As you can see, removing the unwanted headers occurs while adding the necessary

ones (to troubleshoot).

13.1.10 Conclusion

You now have all the knowledge you need to set up a primary cache server and add

functionality.

Having a varnish server in your infrastructure can be very useful for many things

besides caching: for backend server security, for handling headers, for facilitating

updates (blue/green or canary mode, for example), etc.

unset resp.http.X-Varnish;
unset resp.http.Via;
set resp.http.node = "F01";
set resp.http.X-Cache-Hits = obj.hits;
if (obj.hits > 0) { # Add debug header to see if it is a HIT/MISS and the

number of hits, disable when not needed
set resp.http.X-Cache = "HIT";

} else {
set resp.http.X-Cache = "MISS";

}
}

$ sudo varnishd -C -f /etc/varnish/default.vcl
...
$ sudo systemctl reload varnish

$ curl -I http://server1.rockylinux.lan:6081
HTTP/1.1 200 OK
Age: 4
node: F01
X-Cache-Hits: 1
X-Cache: HIT
Accept-Ranges: bytes
Connection: keep-alive

13.1.10 Conclusion

- 107/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

13.1.11 Check your Knowledge

 Can Varnish host static files?

 Does the varnish cache have to be stored in memory?

True

False

True

False

13.1.11 Check your Knowledge

- 108/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

14. Part 5.3 Squid

14.1 Squid

This chapter will teach you about Squid, the HTTP proxy cache.

Objectives: You will learn how to:

 install squid

 configure it to be a proxy and cache HTTP content.

squid, proxy, HTTP

Knowledge:

Complexity:

Reading time: 20 minutes

14.1.1 Generalities

Setting up a proxy server involves choosing between two types of architecture:

A standard proxy architecture requiring specific configuration of each client and

their web browsers

Captive proxy architecture, which involves intercepting the frames sent by the

client and rewriting them to the proxy server

In either case, a break in the network occurs: A client can no longer physically

address a remote server directly without going through a proxy server.

Two firewalls protect the client workstation but never communicate directly with

the outside network.

•

•

14. Part 5.3 Squid

- 109/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

This architecture requires browser configuration on the client workstation.

You don't need to configure all client workstations with a captive proxy.

The configuration occurs at the gateway level, where it receives client requests and

transparently rewrites the frames to send them to the proxy.

Note

14.1.1 Generalities

- 110/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

This architecture requires a specific configuration on the router.

In the case of standard proxy or captive proxy architecture, one of the primary

interests of this type of service is to act as a cache.

In this way, a file downloaded once from the WAN (potentially from a slower link

than the LAN) stores itself in memory in the proxy cache for subsequent clients to

use. This optimizes bandwidth on the slow link.

As you will see later, there are other uses for a proxy.

Deploying a proxy can:

Deny access to specific resources based on various parameters

Set up authentication and monitoring of clients' Internet activities

Set up a hierarchy of distributed caches

Hide the LAN architecture from a WAN point of view (how many clients are there

on the LAN?)

Note

•

•

•

•

14.1.1 Generalities

- 111/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Among the advantages are the following:

Anonymity on the Internet

Authentication

Client activity logging

Filtering

Limiting access

Bandwidth optimization

Security

Implementing authentication blocks many of the malicious effects of viruses on the LAN.

The proxy service becomes a critical service requiring high availability.

When operating a Squid Proxy server, the administrator must exploit the logs.

Therefore, it is essential to know the main HTTP response codes.

•

•

•

•

•

•

•

Note

Warning

Code Categories

1XX Info

2XX Success

3XX Redirection

4XX Customer request error

5XX Server error

14.1.1 Generalities

- 112/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Examples:

200: ok

301: Moved Permanently

302: Moved Temporarily

304: Not modified

400: Bad request

401: Unauthorized

404: Not found

About Squid

Squid supports HTTP and FTP protocols.

The advantages of installing a solution based on the Squid server:

Hardware solutions are expensive

Developed since 1996

Released under GNU/GPL license

SIZING

Ensure high availability

Use fast hard disks for caching

RAM and CPU should be correctly sized

Allow 14MB of RAM per GB of disk cache.

14.1.2 Installation

Install the squid package:

•

•

•

•

•

•

•

•

•

•

•

•

•

Note

sudo dnf install squid

14.1.2 Installation

- 113/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Take care not to start the service until the cache has been initialized!

Squid server tree and files

The single configuration file is /etc/squid/squid.conf .

Service logs (stop and restart) are in /var/log/squid.cache.log , while client

requests are in /var/log/squid/access.log . By default, cache files are in

/var/spool/squid/ .

The squid command

The squid command controls the squid server.

Syntax of the command:

Logging client requests can quickly lead to storing large amounts of data.

It is a good idea to regularly create a new log file and archive the old one in

compressed format.

You can do this either manually, with the -k rotate option of the squid command,

or automatically with the dedicated Linux service logrotate .

Warning

squid [-z|-s|-k parse|-k rotate]

Option Description

-z Initializes cache directories

-s Enables syslog logging

-k parse Test configuration file

-k rotate Rotates logs

14.1.2 Installation

- 114/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

14.1.3 Configuration

Configure Squid in /etc/squid/squid.conf .

Proxy port number (listening port) http_port

The port number is set to 3128 by default but frequently changes to 8080. Remember to open the corresponding firewall port!

When the service restarts, the Squid server will listen on the port defined by the

http_port directive.

RAM reservation cache_mem

For example:

Best practice: 1/3 of total RAM allocated

Internet Cache Protocol (ICP) icp_port

The Internet Cache Protocol (ICP) enables neighboring Squid servers to exchange

requests. It is common practice to propose a hierarchy of proxies that share their

information bases.

The icp_port directive defines the port number Squid uses to send and receive ICP

requests from neighboring Squid servers.

Set to 0 to deactivate.

Anonymous FTP user ftp_user

•

http_port num_port

Note

•

cache_mem taille KB|taille MB|taille GB

cache_mem 1 GB

Tip

•

Tip

•

14.1.3 Configuration

- 115/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The ftp_user directive associates an FTP user with anonymous FTP connections.

The user must have a valid e-mail address.

Set up Access Control Lists

ACL syntax:

Example:

A more extensive discussion of ACLs is in the "Advanced configuration" section.

Maximum size of a cached object maximum_object_size

maximum_object_size directive syntax:

Example:

The object is not cached if the object size is greater than the maximum_object_size

limit.

Proxy server name visible_hostname

Syntax of visible_hostname directive:

Example:

ftp_user bob@rockylinux.lan

•

acl name type argument
http_access allow|deny aclname

acl LUNCHTIME time 12:00-14:00
http_access deny LUNCHTIME

•

maximum_object_size size

maximum_object_size 32 MB

•

visible_hostname name

14.1.3 Configuration

- 116/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The value supplied may be different from the hostname.

Define a cache for squid cache_ufs

IDefining multiple caches on different file systems to optimize access times is

possible.

Example:

When the service launches for the first time, it generates the cache directory:

14.1.4 Advanced configuration

Les Access Control List (ACL)

Syntax of the http_access directive

Example:

visible_hostname proxysquid

Note

•

cache_ufs format path size nbFolderNiv1 nbFolderNiv2

cache_dir ufs /var/spool/squid/ 100 16 256

Option Description

ufs Unix File System

100 Size in mega

16 16 top-level folders

256 256 second-level folders

sudo squid -z
sudo systemctl start squid

http_access allow|deny [!]acl_name

14.1.4 Advanced configuration

- 117/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The !acl_name ACL is the opposite of the acl_name ACL.

Syntax of the acl directive:

The order of ACLs is cumulative. Several ACLs with the same name represent a

single ACL.

Examples:

Lunchtime authorization:

Ban videos:

Managing IP addresses:

FQDN management:

Port management:

http_access allow LUNCHTIME
http_access deny !LUNCHTIME

acl name type argument

acl LUNCHTIME time 12:00-14:00
http_access allow LUNCHTIME

acl VIDEOS rep_mime_type video/mpeg
acl VIDEOS rep_mime_type video/avi
http_access deny VIDEOS

acl XXX src 192.168.0.0/255.255.255.0
acl XXX dst 10.10.10.1

acl XXX srcdomain .rockylinux.org
acl XXX dstdomain .linux.org

acl XXX port 80 21

14.1.4 Advanced configuration

- 118/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Protocol management:

Caching algorithms

Different cache algorithms exist with different characteristics:

LRU - Least Recently Used: removes the oldest objects from the RAM

LRU-THOLD: copies an object to the cache according to its size

MRU: Most Recently Used: deletes the least requested data

GDSF: Greedy Dual Size Frequency: deletes according to original size and access

time with the smallest retained

LFUDA: Least Frequently Used With Dynamic Aging: same as GDSF, but without

the notion of size. Useful for caches with large files

Client authentication

Squid relies on external programs to manage authentication. It can be based on a

simple flat file such as htpasswd or on LDAP, SMB, PAM, or other services.

Authentication can also be a legal necessity. Remember to get your users to sign a

usage charter!

14.1.5 Tools

The squidclient command

Use the squidclient command to test a request to the squid server.

squidclient command syntax:

Example:

acl XXX proto HTTP FTP

•

•

•

•

•

squidclient [-s] [-h target] [-p port] url

14.1.5 Tools

- 119/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Analyze logs

You can monitor Squid's log records with the command:

Decomposition of a log line:

14.1.6 Security

The firewall should be open for the listening port:

squidclient -s -h localhost -p 8080 http://localhost/

Option Description

-s Silent mode (displays nothing in the console)

-h Defines target proxy

-p Listening port (default 3128)

-r Forces the server to reload the object

tail -f /var/log/squid/access.log

Option Description

Date Log timestamp

Response time Response time for request

@client Client IP address

Status code HTTP response code

Size Transfer size

Method HTTP method (Put / Get / Post / etc.)

URL Request URL

Peer Code Inter-proxy response code

File type Mime type of request target

sudo firewall-cmd --add-port=3128/tcp --permanent
sudo firewall-cmd --reload

14.1.6 Security

- 120/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

14.1.7 Workshop

In this workshop, you will install Squid on your server and use it to download

updates.

Task 1: Install and configure Squid

Install Squid:

Remove the comment in this line of the /etc/squid/squid.conf file to create a cache

directory on disk:

Adjust the cache size as required.

Create the cache directories and start the service.

Task 2: Use your proxy with curl

Open a new terminal on your proxy server to follow the proxy's access.

On the second terminal, use curl to access a web page through the proxy:

sudo dnf install squid
sudo systemctl enable squid
sudo firewall-cmd --add-port=3128/tcp --permanent
sudo firewall-cmd --reload

cache_dir ufs /var/spool/squid 100 16 512

sudo squid -z
sudo systemctl start squid

sudo tail -f /var/log/squid/access.log

$ curl -I --proxy "http://192.168.1.10:3128" https://docs.rockylinux.org
HTTP/1.1 200 Connection established

HTTP/2 200
content-type: text/html
...

14.1.7 Workshop

- 121/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

As you can see, two HTTP connections exist. The first is with the proxy, and the

second is from the proxy to the remote server.

You can see the trace on your second terminal:

The content is not cached here as you request an https connection to the remote

server.

Task 3: Configure DNS to use your proxy server

Edit the /etc/dnf/dnf.conf file to use the proxy squid:

Clean your dnf cache and try an update:

Verify on your terminal that the dnf connection uses your proxy to download its

update. Note that the "URL of repository" in the line that follows will be replaced

with the actual mirror URL:

1723793294.548 77 192.168.1.10 TCP_TUNNEL/200 3725 CONNECT
docs.rockylinux.org:443 - HIER_DIRECT/151.101.122.132 -

[main]
gpgcheck=1
installonly_limit=3
clean_requirements_on_remove=True
best=True
skip_if_unavailable=False
proxy=http://192.168.1.10:3128

sudo dnf clean all
sudo dnf update

1723793986.725 20 192.168.1.10 TCP_MISS/200 5238 GET "URL of repository"/
9.4/extras/x86_64/os/repodata/7d78a729-8e9a-4066-96d4-ab8ed8f06ee8-
FILELISTS.xml.gz - HIER_DIRECT/193.106.119.144 application/x-gzip
...
1723794176.255 1 192.168.1.10 TCP_HIT/200 655447 GET "URL of repository"/
9.4/AppStream/x86_64/os/repodata/1af312c9-7139-43ed-8761-90ba3cd55461-
UPDATEINFO.xml.gz - HIER_NONE/- application/x-gzip

14.1.7 Workshop

- 122/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

In this example, you can see one connection with a TCP_MISS (not present in the

cache) and another with TCP_HIT (use the cache to answer the client).

14.1.8 Conclusion

You now know how to install Squid on your local network. This will enable you to

centralize your outgoing connections to the Internet and secure your local network.

14.1.9 Check your Knowledge

 What is the port listened to by a squid server per default?

 What Squid is?

8080

1234

443

3128

A reverse proxy cache

A proxy cache

14.1.8 Conclusion

- 123/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

15. Part 6. Mail servers

15. Part 6. Mail servers

- 124/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

16. Part 7. High availability

16.1 Clustering under Linux

High availability is a term often used in IT, in connection with system architecture

or a service, to designate the fact that this architecture or service has a suitable

rate of availability. ~ wikipedia

This availability is a performance measure expressed as a percentage obtained by

the ratio Operating time / Total desired operating time.

"High Availability" (HA) refers to all measures taken to guarantee a service's

highest possible availability—that is, correct operation 24 hours a day.

16.1.1 Overview

A cluster is a "computer cluster", a group of two or more machines.

A cluster allows:

distributed computing by using the computing power of all the nodes

high availability: service continuity and automatic service failover in the event of

a node failure

Types of services

Active/passive services

Rates Annual downtime

90% 876 hours

95% 438 hours

99% 87 hours 36 minutes

99,9% 8 hours 45 minutes 36 seconds

99,99% 52 minutes 33 seconds

99,999% 5 minutes 15 seconds

99,9999% 31,68 seconds

•

•

•

16. Part 7. High availability

- 125/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Installing a cluster with two active/passive nodes using Pacemaker and DRBD is a

low-cost solution for many situations requiring a high-availability system.

N+1 services

With multiple nodes, Pacemaker can reduce hardware costs by allowing several

active/passive clusters to combine and share a backup node.

N TO N services

With shared storage, every node can potentially be used for fault tolerance.

Pacemaker can also run multiple copies of services to spread the workload.

Remote site services

Pacemaker includes enhancements to simplify the creation of multisite clusters.

VIP

The VIP is a virtual IP address assigned to an Active/Passive cluster. Assign the VIP

to an active cluster node. If a service failure occurs, the VIP is deactivated on the

failed node, while activation occurs on the node taking over. This is known as

failover.

Clients always address the cluster using VIP, making active server failovers

transparent.

Split-brain

Split-brain is the leading risk a cluster may encounter. This condition occurs when

several nodes in a cluster think their neighbor is inactive. The node then tries to

start the redundant service, and several nodes provide the same service, which can

lead to annoying side effects (duplicate VIPs on the network, competing data

access, and so on).

Possible technical solutions to avoid this problem are:

Separate public network traffic from cluster network traffic

using network bonding

•

•

•

•

•

16.1.1 Overview

- 126/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

16.2 Pacemaker (PCS)

In this chapter, you will learn about Pacemaker, a clustering solution.

Objectives: You will learn how to:

 install and configure a Pacemaker cluster; administer a Pacemaker cluster.

clustering, ha, high availability, pcs, pacemaker

Knowledge: Complexity:

Reading time: 20 minutes

16.2.1 Generalities

Pacemaker is the software part of the cluster that manages its resources (VIPs,

services, data). It is responsible for starting, stopping and, supervising cluster

resources. It guarantees high node availability.

Pacemaker uses the message layer provided by corosync (default) or Heartbeat.

Pacemaker consists of 5 key components:

Cluster Information Base (CIB)

Cluster Resource Management daemon (CRMd)

Local Resource Management daemon (LRMd)

Policy Engine (PEngine or PE)

Fencing daemon (STONITHd)

The CIB represents the cluster configuration and the current state of all cluster

resources. Its contents are automatically synchronized across the entire cluster

and used by the PEngine to calculate how to achieve the ideal cluster state.

The list of instructions is then provided to the Designated Controller (DC).

Pacemaker centralizes all cluster decisions by electing one of the CRMd instances

as master.

•

•

•

•

•

16.2 Pacemaker (PCS)

- 127/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The DC executes the PEngine's instructions in the required order, transmitting

them to the local LRMd or the CRMd of the other nodes via Corosync or Heartbeat.

Sometimes, stopping nodes to protect shared data or enable recovery may be

necessary. Pacemaker comes with STONITHd for this purpose.

Stonith

Stonith is a component of Pacemaker. It stands for Shoot-The-Other-Node-In-The-

Head, a recommended practice for ensuring the isolation of the malfunctioning

node as quickly as possible (shut down or at least disconnected from shared

resources), thus avoiding data corruption.

An unresponsive node does not mean that it can no longer access data. The only

way to ensure that a node is no longer accessing data before handing it over to

another node is to use STONITH, which will shut down or restart the failed server.

STONITH also has a role if a clustered service fails to shut down. In this case,

Pacemaker uses STONITH to force the entire node to stop.

Quorum management

The quorum represents the minimum number of nodes in operation to validate a

decision, such as deciding which backup node should take over when one of the

nodes is in error. By default, Pacemaker requires more than half the nodes to be

online.

When communication problems split a cluster into several group nodes, quorum

prevents resources from starting up on more nodes than expected. A cluster is

quorate when more than half of all nodes known to be online are in its group

(active_nodes_group > active_total_nodes / 2).

When a quorum is not reached, the default decision is to turn off all resources.

16.2.1 Generalities

- 128/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Case study:

On a two-node cluster, since reaching quorum is not possible, a node failure

must be ignored, or the entire cluster will be shut down.

If a 5-node cluster is split into 2 groups of 3 and 2 nodes, the 3-node group will

have a quorum and continue to manage resources.

If a 6-node cluster is split into 2 groups of 3 nodes, no group will have a quorum.

In this case, the pacemaker's default behavior is to stop all resources to avoid

data corruption.

Cluster communication

A pacemaker uses either Corosync or Heartbeat (from the Linux-ha project) for

node-to-node communication and cluster management.

COROSYNC

Corosync Cluster Engine is a messaging layer between cluster members that

integrates additional functionalities to implement high availability within

applications. The Corosync derives from the OpenAIS project.

Nodes communicate in Client/Server mode with the UDP protocol.

It can manage clusters of more than 16 Active/Passive or Active/Active modes.

HEARTBEAT

Heartbeat technology is more limited than Corosync. It is impossible to create a

cluster of more than two nodes, and its management rules are less sophisticated

than those of its competitor.

The choice of pacemaker/corosync today seems more appropriate, as it is the default choice for RedHat, Debian and Ubuntu

distributions.

•

•

•

Note

16.2.1 Generalities

- 129/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Data management

THE DRDB NETWORK RAID

DRDB is a block-type device driver enabling RAID 1 (mirroring) implementation

over the network.

DRDB can be useful when NAS or SAN technologies are unavailable, but data

synchronization is needed.

16.2.2 Installation

To install Pacemaker, first enable the highavailability repository:

Some information about the pacemaker package:

sudo dnf config-manager --set-enabled highavailability

$ dnf info pacemaker
Rocky Linux 9 - High
Availability
289 kB/s | 250 kB 00:00
Available Packages
Name : pacemaker
Version : 2.1.7
Release : 5.el9_4
Architecture : x86_64
Size : 465 k
Source : pacemaker-2.1.7-5.el9_4.src.rpm
Repository : highavailability
Summary : Scalable High-Availability cluster resource manager
URL : https://www.clusterlabs.org/
License : GPL-2.0-or-later AND LGPL-2.1-or-later
Description : Pacemaker is an advanced, scalable High-Availability cluster
resource

: manager.
:
: It supports more than 16 node clusters with significant

capabilities
: for managing resources and dependencies.
:
: It will run scripts at initialization, when machines go up or

down,

16.2.2 Installation

- 130/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Using the repoquery command, you can find out the dependencies of the

pacemaker package:

The pacemaker installation will, therefore, automatically install corosync and a CLI

interface for a pacemaker.

Some information about the corosync package:

Install now the required packets:

: when related resources fail and can be configured to
periodically check

: resource health.
:
: Available rpmbuild rebuild options:
: --with(out) : cibsecrets hardening nls pre_release profiling
: stonithd

$ repoquery --requires pacemaker
corosync >= 3.1.1
pacemaker-cli = 2.1.7-5.el9_4
resource-agents
systemd
...

$ dnf info corosync
Available Packages
Name : corosync
Version : 3.1.8
Release : 1.el9
Architecture : x86_64
Size : 262 k
Source : corosync-3.1.8-1.el9.src.rpm
Repository : highavailability
Summary : The Corosync Cluster Engine and Application Programming
Interfaces
URL : http://corosync.github.io/corosync/
License : BSD
Description : This package contains the Corosync Cluster Engine Executive,
several default

: APIs and libraries, default configuration files, and an init
script.

sudo dnf install pacemaker

16.2.2 Installation

- 131/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Open your firewall if you have one:

Do not start the services now, as they are not configured and will not work.

16.2.3 Cluster management

The pcs package provides cluster management tools. The pcs command is a

command-line interface for managing the Pacemaker high-availability stack.

Cluster configuration could be done by hand, but the pcs package makes managing

(creating, configuring, and troubleshooting) a cluster much easier!

There are alternatives to pcs.

Install the package on all nodes and activate the daemon:

The package installation created a hacluster user with an empty password. To

perform tasks such as synchronizing corosync configuration files or rebooting

remote nodes. Assigning a password to this user is necessary.

On all nodes, assign an identical password to the hacluster user:

Please replace "pwdhacluster" with a more secure password.

sudo firewall-cmd --permanent --add-service=high-availability
sudo firewall-cmd --reload

Note

Note

sudo dnf install pcs
sudo systemctl enable pcsd --now

hacluster:x:189:189:cluster user:/var/lib/pacemaker:/sbin/nologin

echo "pwdhacluster" | sudo passwd --stdin hacluster

Note

16.2.3 Cluster management

- 132/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

From any node, it is possible to authenticate as a hacluster user on all nodes then

use the pcs commands on them:

From the node on which pcs authentication occurs, launch the cluster

configuration:

The pcs cluster setup command handles the quorum problem for two-node clusters. Such a cluster will, therefore, function correctly

in the event of the failure of one of the two nodes. If you manually configure Corosync or use another cluster management shell, you

must configure Corosync correctly.

You can now start the cluster:

$ sudo pcs host auth server1 server2
Username: hacluster
Password:
server1: Authorized
server2: Authorized

$ sudo pcs cluster setup mycluster server1 server2
No addresses specified for host 'server1', using 'server1'
No addresses specified for host 'server2', using 'server2'
Destroying cluster on hosts: 'server1', 'server2'...
server2: Successfully destroyed cluster
server1: Successfully destroyed cluster
Requesting remove 'pcsd settings' from 'server1', 'server2'
server1: successful removal of the file 'pcsd settings'
server2: successful removal of the file 'pcsd settings'
Sending 'corosync authkey', 'pacemaker authkey' to 'server1', 'server2'
server1: successful distribution of the file 'corosync authkey'
server1: successful distribution of the file 'pacemaker authkey'
server2: successful distribution of the file 'corosync authkey'
server2: successful distribution of the file 'pacemaker authkey'
Sending 'corosync.conf' to 'server1', 'server2'
server1: successful distribution of the file 'corosync.conf'
server2: successful distribution of the file 'corosync.conf'
Cluster has been successfully set up.

Note

$ sudo pcs cluster start --all
server1: Starting Cluster...
server2: Starting Cluster...

16.2.3 Cluster management

- 133/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Enable the cluster service to start on boot:

Check the service status:

Adding resources

Before you can configure the resources, you will need to deal with the alert

message:

In this state, Pacemaker will refuse to start your new resources.

sudo pcs cluster enable --all

$ sudo pcs status
Cluster name: mycluster

WARNINGS:
No stonith devices and stonith-enabled is not false

Cluster Summary:
* Stack: corosync (Pacemaker is running)
* Current DC: server1 (version 2.1.7-5.el9_4-0f7f88312) - partition with

quorum
* Last updated: Mon Jul 8 17:50:14 2024 on server1
* Last change: Mon Jul 8 17:50:00 2024 by hacluster via hacluster on

server1
* 2 nodes configured
* 0 resource instances configured

Node List:
* Online: [server1 server2]

Full List of Resources:
* No resources

Daemon Status:
corosync: active/disabled
pacemaker: active/disabled
pcsd: active/enabled

WARNINGS:
No stonith devices and stonith-enabled is not false

16.2.3 Cluster management

- 134/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You have two choices:

disable stonith

configure it

First, you will disable stonith until you learn how to configure it:

Be careful not to leave stonith disabled in a production environment!

VIP CONFIGURATION

The first resource you will create on your cluster is a VIP.

List the standard resources available with the pcs resource standards command:

This VIP corresponds to customers' IP addresses so they can access future cluster

services. You must assign it to one of the nodes. Then, if a failure occurs, the

cluster will switch this resource from one node to another to ensure continuity of

service.

The ocf:heartbeat:IPaddr2 argument contains three fields that provide Pacemaker

with the following:

the standard (here ocf)

the script namespace (here heartbeat)

the resource script name

•

•

sudo pcs property set stonith-enabled=false

Warning

$ pcs resource standards
lsb
ocf
service
systemd

pcs resource create myclusterVIP ocf:heartbeat:IPaddr2 ip=192.168.1.12
cidr_netmask=24 op monitor interval=30s

•

•

•

16.2.3 Cluster management

- 135/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The result is the addition of a virtual IP address to the list of managed resources:

In this case, VIP is active on server1. Verification with the ip command is possible:

Toggle tests

From anywhere on the network, run the ping command on the VIP:

Put the active node on standby:

Check that all pings succeed during the operation (no missing icmp_seq):

$ sudo pcs status
Cluster name: mycluster

...
Cluster name: mycluster
Cluster Summary:

* Stack: corosync (Pacemaker is running)
...
* 2 nodes configured
* 1 resource instance configured

Full List of Resources:
* myclusterVIP (ocf:heartbeat:IPaddr2): Started server1

...

$ ip add show dev enp0s3
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP
group default qlen 1000

link/ether 08:00:27:df:29:09 brd ff:ff:ff:ff:ff:ff
inet 192.168.1.10/24 brd 192.168.1.255 scope global noprefixroute enp0s3

valid_lft forever preferred_lft forever
inet 192.168.1.12/24 brd 192.168.1.255 scope global secondary enp0s3

valid_lft forever preferred_lft forever

ping 192.168.1.12

sudo pcs node standby server1

64 bytes from 192.168.1.12: icmp_seq=39 ttl=64 time=0.419 ms
64 bytes from 192.168.1.12: icmp_seq=40 ttl=64 time=0.043 ms

16.2.3 Cluster management

- 136/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Check the cluster status:

The VIP has moved to server2. Check with the ip add command as before.

Return server1 to the pool:

Once server1 has been unstandby , the cluster returns to its normal state, but the

resource is not transferred back to server1: it remains on server2.

SERVICE CONFIGURATION

You will install the Apache service on both nodes of your cluster. This service is

only started on the active node and will switch nodes at the same time as the VIP if

the active node fails.

Refer to the Apache chapter for detailed installation instructions.

64 bytes from 192.168.1.12: icmp_seq=41 ttl=64 time=0.129 ms
64 bytes from 192.168.1.12: icmp_seq=42 ttl=64 time=0.074 ms
64 bytes from 192.168.1.12: icmp_seq=43 ttl=64 time=0.099 ms
64 bytes from 192.168.1.12: icmp_seq=44 ttl=64 time=0.044 ms
64 bytes from 192.168.1.12: icmp_seq=45 ttl=64 time=0.021 ms
64 bytes from 192.168.1.12: icmp_seq=46 ttl=64 time=0.058 ms

$ sudo pcs status
Cluster name: mycluster
Cluster Summary:
...

* 2 nodes configured
* 1 resource instance configured

Node List:
* Node server1: standby
* Online: [server2]

Full List of Resources:
* myclusterVIP (ocf:heartbeat:IPaddr2): Started server2

sudo pcs node unstandby server1

Note

16.2.3 Cluster management

- 137/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You must install httpd on both nodes:

Do not start or activate the service yourself. The Pacemaker will take care of it.

An HTML page containing the server name will show by default:

The Pacemaker resource agent will use the /server-status page (see Apache

chapter) to determine its health status. You must activate it by creating the file /

etc/httpd/conf.d/status.conf on both servers:

To create a resource, you will call "WebSite"; you will call the Apache script of the

OCF resource and in the heartbeat namespace.

The cluster will check Apache's health every minute (op monitor interval=1min).

Finally, to ensure that the Apache service starts on the same node as the VIP

address, you must add a constraint to the cluster:

sudo dnf install -y httpd
sudo firewall-cmd --permanent --add-service=http
sudo firewall-cmd --reload

Warning

echo "<html><body>Node $(hostname -f)</body></html>" | sudo tee "/var/www/html/
index.html"

sudo vim /etc/httpd/conf.d/status.conf
<Location /server-status>

SetHandler server-status
Require local

</Location>

sudo pcs resource create WebSite ocf:heartbeat:apache configfile=/etc/httpd/
conf/httpd.conf statusurl="http://localhost/server-status" op monitor
interval=1min

sudo pcs constraint colocation add WebSite with myclusterVIP INFINITY

16.2.3 Cluster management

- 138/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Configuring the Apache service to start after the VIP is also possible. This can be

useful if Apache has VHost configurations to listen to the VIP address (Listen

192.168.1.12):

Testing the failover

You will perform a failover and test that your web server is still available:

You are currently working on server1.

Simulate a failure on server1:

As you can see, your web service is still working, but it is on server2 now.

$ sudo pcs constraint order myclusterVIP then WebSite
Adding myclusterVIP WebSite (kind: Mandatory) (Options: first-action=start
then-action=start)

$ sudo pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync (Pacemaker is running)
* Current DC: server1 (version 2.1.7-5.el9_4-0f7f88312) - partition with

quorum
...

Node List:
* Online: [server1 server2]

Full List of Resources:
* myclusterVIP (ocf:heartbeat:IPaddr2): Started server1
* WebSite (ocf:heartbeat:apache): Started server1

$ curl http://192.168.1.12/
<html><body>Node server1</body></html>

sudo pcs node standby server1

$ curl http://192.168.1.12/
<html><body>Node server2</body></html>

16.2.3 Cluster management

- 139/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Note that the service was only interrupted for a few seconds while the VIP

switched over, and the services restarted.

16.2.4 Cluster troubleshooting

The pcs status command

The pcs status command provides information about the overall status of the

cluster:

As you can see, one of the two servers is offline.

sudo pcs node unstandby server1

$ sudo pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync (Pacemaker is running)
* Current DC: server1 (version 2.1.7-5.el9_4-0f7f88312) - partition with

quorum
* Last updated: Tue Jul 9 12:25:42 2024 on server1
* Last change: Tue Jul 9 12:10:55 2024 by root via root on server1
* 2 nodes configured
* 2 resource instances configured

Node List:
* Online: [server1]
* OFFLINE: [server2]

Full List of Resources:
* myclusterVIP (ocf:heartbeat:IPaddr2): Started server1
* WebSite (ocf:heartbeat:apache): Started server1

Daemon Status:
corosync: active/enabled
pacemaker: active/enabled
pcsd: active/enabled

16.2.4 Cluster troubleshooting

- 140/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The pcs status corosync command

The pcs status corosync command provides information about the status of

corosync nodes:

and once the server2 is back:

The crm_mon command

The crm_mon command returns cluster status information. Use the -1 option to

display the cluster status once and exit.

$ sudo pcs status corosync

Membership information

Nodeid Votes Name
1 1 server1 (local)

$ sudo pcs status corosync

Membership information

Nodeid Votes Name
1 1 server1 (local)
2 1 server2

$ sudo crm_mon -1
Cluster Summary:

* Stack: corosync (Pacemaker is running)
* Current DC: server1 (version 2.1.7-5.el9_4-0f7f88312) - partition with

quorum
* Last updated: Tue Jul 9 12:30:21 2024 on server1
* Last change: Tue Jul 9 12:10:55 2024 by root via root on server1
* 2 nodes configured
* 2 resource instances configured

Node List:
* Online: [server1 server2]

Active Resources:
* myclusterVIP (ocf:heartbeat:IPaddr2): Started server1
* WebSite (ocf:heartbeat:apache): Started server1

16.2.4 Cluster troubleshooting

- 141/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

The corosync-*cfgtool* commands

The corosync-cfgtool command checks that the configuration is correct and that

communication with the cluster is working properly:

The corosync-cmapctl command is a tool for accessing the object database. For

example, you can use it to check the status of cluster member nodes:

16.2.5 Workshop

For this workshop, you will need two servers with Pacemaker services installed,

configured, and secured, as described in the previous chapters.

You will configure a highly available Apache cluster.

Your two servers have the following IP addresses:

server1: 192.168.1.10

server2: 192.168.1.11

If you do not have a service to resolve names, fill the /etc/hosts file with content

like the following:

$ sudo corosync-cfgtool -s
Local node ID 1, transport knet
LINK ID 0 udp

addr = 192.168.1.10
status:

nodeid: 1: localhost
nodeid: 2: connected

$ sudo corosync-cmapctl | grep members
runtime.members.1.config_version (u64) = 0
runtime.members.1.ip (str) = r(0) ip(192.168.1.10)
runtime.members.1.join_count (u32) = 1
runtime.members.1.status (str) = joined
runtime.members.2.config_version (u64) = 0
runtime.members.2.ip (str) = r(0) ip(192.168.1.11)
runtime.members.2.join_count (u32) = 2
runtime.members.2.status (str) = joined

•

•

16.2.5 Workshop

- 142/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

You will use the VIP address of 192.168.1.12 .

Task 1: Installation and configuration

To install Pacemaker, enable the highavailability repository.

On both nodes:

On server1:

Task 2: Adding a VIP

The first resource you will create on your cluster is a VIP.

$ cat /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6

192.168.1.10 server1 server1.rockylinux.lan
192.168.1.11 server2 server2.rockylinux.lan

sudo dnf config-manager --set-enabled highavailability
sudo dnf install pacemaker pcs
sudo firewall-cmd --permanent --add-service=high-availability
sudo firewall-cmd --reload
sudo systemctl enable pcsd --now
echo "pwdhacluster" | sudo passwd --stdin hacluster

$ sudo pcs host auth server1 server2
Username: hacluster
Password:
server1: Authorized
server2: Authorized
$ sudo pcs cluster setup mycluster server1 server2
$ sudo pcs cluster start --all
$ sudo pcs cluster enable --all
$ sudo pcs property set stonith-enabled=false

pcs resource create myclusterVIP ocf:heartbeat:IPaddr2 ip=192.168.1.12
cidr_netmask=24 op monitor interval=30s

16.2.5 Workshop

- 143/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Check the cluster status:

Task 3: Installing the Apache server

Perform this installation on both nodes:

Task 4: Adding the httpd resource

Only on server1, add the new resource to the cluster with the needed constraints:

$ sudo pcs status
Cluster name: mycluster
Cluster Summary:
...

* 2 nodes configured
* 1 resource instance configured

Node List:
* Node server1: standby
* Online: [server2]

Full List of Resources:
* myclusterVIP (ocf:heartbeat:IPaddr2): Started server2

$ sudo dnf install -y httpd
$ sudo firewall-cmd --permanent --add-service=http
$ sudo firewall-cmd --reload
echo "<html><body>Node $(hostname -f)</body></html>" | sudo tee "/var/www/html/
index.html"
sudo vim /etc/httpd/conf.d/status.conf
<Location /server-status>

SetHandler server-status
Require local

</Location>

sudo pcs resource create WebSite ocf:heartbeat:apache configfile=/etc/httpd/
conf/httpd.conf statusurl="http://localhost/server-status" op monitor
interval=1min
sudo pcs constraint colocation add WebSite with myclusterVIP INFINITY
sudo pcs constraint order myclusterVIP then WebSite

16.2.5 Workshop

- 144/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

Task 5: Test your cluster

You will perform a failover and test that your web server is still available:

You are currently working on server1.

Simulate a failure on server1:

As you can see, your webservice is still working but on server2 now.

Note that the service was only interrupted for a few seconds while the VIP

switched over and the services restarted.

16.2.6 Check your knowledge

 Is the pcs command the only one to control a pacemaker cluster?

$ sudo pcs status
Cluster name: mycluster
Cluster Summary:

* Stack: corosync (Pacemaker is running)
* Current DC: server1 (version 2.1.7-5.el9_4-0f7f88312) - partition with

quorum
...

Node List:
* Online: [server1 server2]

Full List of Resources:
* myclusterVIP (ocf:heartbeat:IPaddr2): Started server1
* WebSite (ocf:heartbeat:apache): Started server1

$ curl http://192.168.1.12/
<html><body>Node server1</body></html>

sudo pcs node standby server1

$ curl http://192.168.1.12/
<html><body>Node server2</body></html>

sudo pcs node unstandby server1

16.2.6 Check your knowledge

- 145/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

 Which command returns the cluster state?

sudo pcs status

systemctl status pcs

sudo crm_mon -1

sudo pacemaker -t

16.2.6 Check your knowledge

- 146/147 - Copyright © 2023 The Rocky Enterprise Software Foundation

https://docs.rockylinux.org/

Rocky Linux Web Services Guide (English version) Copyright © 2023 The Rocky Enterprise Software Foundation

	Rocky Linux Web Services Guide (English version)
	Version : 2025/07/12

	1. Foreword
	1.1 Public
	1.2 How to use this book

	2. Licence
	3. Part 1. Files Servers
	4. Part 2. Web Servers Introduction
	4.1 Introduction
	4.1.1 HTTP protocol
	4.1.2 URLs
	4.1.3 Ports

	4.2 Apache and Nginx

	5. Part 2.1 Web Servers Apache
	5.1 Apache
	5.1.1 Generalities
	5.1.2 Installation
	5.1.3 Configuration
	Section 1
	Multi-Process Modules (MPM)
	About keepalive directives

	Section 2
	The ErrorLog directive
	The DirectoryIndex directive
	The Directory directive
	The mod_status

	Shared hosting (section 3)
	The VirtualHost directive
	The NameVirtualHost directive

	Taking changes into account
	Manual
	The apachectl command

	5.1.4 Security
	SELinux
	User and Group directives
	File permissions

	6. Part 2.2 Web Servers Nginx
	6.1 Nginx web server
	6.1.1 Generalities
	Features

	6.1.2 Installation
	6.1.3 Configuration
	6.1.4 https configuration
	6.1.5 Log management
	6.1.6 Nginx as a reverse proxy

	7. Part 3. Application servers
	7.1 PHP and PHP-FPM
	7.1.1 Generalities
	7.1.2 Choose a PHP version
	7.1.3 Installation of the PHP CGI mode
	7.1.4 Apache Integration
	7.1.5 Installation of the PHP cgi mode (PHP-FPM)
	Configuration of the PHP cgi mode
	Configuring the way to access php-fpm processes
	Static or dynamic configuration
	Process status
	Logging long requests

	7.1.6 NGinx integration
	7.1.7 Apache integration
	7.1.8 Solid configuration of PHP pools
	7.1.9 Opcache configuration

	8. Part 4.1 Database servers MariaDB
	8.1 MariaDB and MySQL
	8.1.1 Generalities
	8.1.2 Installation
	About default users

	8.1.3 Configuration
	8.1.4 Security
	8.1.5 Administration
	The mariadb command
	The mariadb-admin command

	8.1.6 About logs
	8.1.7 About backup
	8.1.8 Graphical tools
	8.1.9 Workshop
	Task 1: Installation
	Task 2: Secure your server
	Task 3: Testing the installation
	Task 4: Create a new database and a user
	Task 5: Create a remote user
	Task 6: Perform an upgrade
	Task 6: Perform a dump

	8.1.10 Check your Knowledge
	8.1.11 Conclusion

	9. Part 4.2 Database Servers MySQL
	9.1 MySQL
	9.1.1 Installation of MySQL
	9.1.2 Check your Knowledge of MySQL

	10. Part 4.3 MariaDB database replication
	10.1 Secondary server with MariaDB
	10.1.1 Generalities secondary server with MariaDB
	10.1.2 Configuration of secondary server with MariaDB
	How to activate the binlogs
	How to configure the replication

	10.1.3 Workshop secondary server using MariaDB
	Task 1: Create a dedicated replication user
	Task 2: Record the primary server values
	Task 3: Activate the replication
	Task 4: Create a new database and a user
	Task 5: Insert new data

	10.1.4 Check your Knowledge of the secondary server with MariaDB
	10.1.5 Conclusion about the secondary server with MariaDB

	11. Part 5. Load balancing, caching and proxyfication
	12. Part 5.1 HAProxy
	13. Part 5.2 Varnish
	13.1 Varnish
	13.1.1 Generalities
	Ensuring high availability
	Ensuring scalability
	Facilitating scalability
	TLS certificate management
	How it works

	13.1.2 Configuration
	Configuring the varnish daemon
	Configuring the backends

	13.1.3 VCL language
	Subroutines
	VCL operators
	Varnish objects
	Varnish actions

	13.1.4 Verification/Testing/Troubleshooting
	13.1.5 Backends
	ACL management
	POST and cookies settings
	Distribute requests to different backends
	Load distribution
	Managing backends with CLI

	13.1.6 Apache logs
	13.1.7 Cache purge
	13.1.8 Log management
	13.1.9 Workshop
	Task 1: Installation and configuration of Apache
	Task 2: Install varnish
	Task 3: Configure Apache as a backend
	Task 4: Remove some headers

	13.1.10 Conclusion
	13.1.11 Check your Knowledge

	14. Part 5.3 Squid
	14.1 Squid
	14.1.1 Generalities
	About Squid
	Sizing

	14.1.2 Installation
	Squid server tree and files
	The squid command

	14.1.3 Configuration
	14.1.4 Advanced configuration
	Les Access Control List (ACL)
	Caching algorithms
	Client authentication

	14.1.5 Tools
	The squidclient command
	Analyze logs

	14.1.6 Security
	14.1.7 Workshop
	Task 1: Install and configure Squid
	Task 2: Use your proxy with curl
	Task 3: Configure DNS to use your proxy server

	14.1.8 Conclusion
	14.1.9 Check your Knowledge

	15. Part 6. Mail servers
	16. Part 7. High availability
	16.1 Clustering under Linux
	16.1.1 Overview
	Types of services
	VIP
	Split-brain

	16.2 Pacemaker (PCS)
	16.2.1 Generalities
	Stonith
	Quorum management
	Cluster communication
	Corosync
	Heartbeat

	Data management
	The DRDB network raid

	16.2.2 Installation
	16.2.3 Cluster management
	Adding resources
	VIP configuration
	Toggle tests

	Service configuration
	Testing the failover

	16.2.4 Cluster troubleshooting
	The pcs status command
	The pcs status corosync command
	The crm_mon command
	The corosync-*cfgtool* commands

	16.2.5 Workshop
	Task 1: Installation and configuration
	Task 2: Adding a VIP
	Task 3: Installing the Apache server
	Task 4: Adding the httpd resource
	Task 5: Test your cluster

	16.2.6 Check your knowledge

